期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的图像修复方法研究综述
被引量:
2
1
作者
彭进业
余喆
+2 位作者
屈书毅
胡琦瑶
王珺
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2023年第6期943-963,共21页
图像修复是指通过使用计算机算法和图像处理技术还原损坏、缺失或被破坏的图像区域,其目标是使修复后的图像在视觉上具有合理的结构、纹理和连贯性,并且尽可能与原始图像的外观和信息接近。传统的图像修复技术通常基于规则和启发式方法...
图像修复是指通过使用计算机算法和图像处理技术还原损坏、缺失或被破坏的图像区域,其目标是使修复后的图像在视觉上具有合理的结构、纹理和连贯性,并且尽可能与原始图像的外观和信息接近。传统的图像修复技术通常基于规则和启发式方法,利用像素间的局部关系、边缘信息、纹理统计等低级特征进行图像修复,难以修复具有复杂语义的图像。近年来,深度学习技术由于其强大的特征提取能力,在图像修复任务中逐渐成为主流方法。这些方法借助大规模数据集进行训练,通过深层次的卷积神经网络或生成对抗网络自动学习图像的高级特征和复杂语义信息。然而,现有的图像修复总结研究较少,且深度学习技术更新太快,为了更好地推动深度学习技术在图像修复领域中的应用及发展,有必要对现有相关方法进行分类和总结。该文对基于深度学习的图像修复方法进行了系统回顾和全面概述,从修复策略的角度出发对图像修复方法进行系统性总结。具体分析了每类方法的优势和局限性,总结了常用的数据集、定量评价指标及代表性方法的性能对比,对图像修复领域存在的难点问题及未来研究方向进行了展望。
展开更多
关键词
数字图像处理
图像修复
深度学习
计算机视觉
下载PDF
职称材料
题名
基于深度学习的图像修复方法研究综述
被引量:
2
1
作者
彭进业
余喆
屈书毅
胡琦瑶
王珺
机构
西北大学信息科学与技术学院
陕西省丝绸之路文化遗产数字化保护与传承协同创新中心
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2023年第6期943-963,共21页
基金
国家自然学科基金(62101446)
陕西省科技计划重点项目(2021ZDLGY15-06)
陕西省自然科学基金(2023-JC-QN-0750)。
文摘
图像修复是指通过使用计算机算法和图像处理技术还原损坏、缺失或被破坏的图像区域,其目标是使修复后的图像在视觉上具有合理的结构、纹理和连贯性,并且尽可能与原始图像的外观和信息接近。传统的图像修复技术通常基于规则和启发式方法,利用像素间的局部关系、边缘信息、纹理统计等低级特征进行图像修复,难以修复具有复杂语义的图像。近年来,深度学习技术由于其强大的特征提取能力,在图像修复任务中逐渐成为主流方法。这些方法借助大规模数据集进行训练,通过深层次的卷积神经网络或生成对抗网络自动学习图像的高级特征和复杂语义信息。然而,现有的图像修复总结研究较少,且深度学习技术更新太快,为了更好地推动深度学习技术在图像修复领域中的应用及发展,有必要对现有相关方法进行分类和总结。该文对基于深度学习的图像修复方法进行了系统回顾和全面概述,从修复策略的角度出发对图像修复方法进行系统性总结。具体分析了每类方法的优势和局限性,总结了常用的数据集、定量评价指标及代表性方法的性能对比,对图像修复领域存在的难点问题及未来研究方向进行了展望。
关键词
数字图像处理
图像修复
深度学习
计算机视觉
Keywords
digital image processing
image inpainting
deep learning
computer vision
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的图像修复方法研究综述
彭进业
余喆
屈书毅
胡琦瑶
王珺
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部