针对社交网络中协同过滤推荐算法的推荐速度计算问题,提出了一种基于最近邻方法的改进计算方法,并对算法有效性进行了分析。该算法对用户的相似性度量采用基于最短路径的信任关系,用分层图和动态规划的方法进行计算,并在社交网络的应用...针对社交网络中协同过滤推荐算法的推荐速度计算问题,提出了一种基于最近邻方法的改进计算方法,并对算法有效性进行了分析。该算法对用户的相似性度量采用基于最短路径的信任关系,用分层图和动态规划的方法进行计算,并在社交网络的应用中对关系链的深度进行限制。对该算法基于KDD Cup 2012 Track 1的数据进行了仿真,并与其他方法做了性能比较。实验表明,改进算法可以很好地平衡推荐效率和准确率指标。展开更多
文摘针对社交网络中协同过滤推荐算法的推荐速度计算问题,提出了一种基于最近邻方法的改进计算方法,并对算法有效性进行了分析。该算法对用户的相似性度量采用基于最短路径的信任关系,用分层图和动态规划的方法进行计算,并在社交网络的应用中对关系链的深度进行限制。对该算法基于KDD Cup 2012 Track 1的数据进行了仿真,并与其他方法做了性能比较。实验表明,改进算法可以很好地平衡推荐效率和准确率指标。