期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于SVMD-BO-BiTCN的超短期光伏发电功率预测
1
作者
何瑨麟
郝建新
+1 位作者
苏成飞
屠壮壮
《分布式能源》
2024年第5期22-31,共10页
光照的间歇性使光伏发电功率波动性较大,导致光伏发电功率的预测准确率较低。为此,提出一种基于连续变分模态分解(successive variational mode decomposition,SVMD)、贝叶斯优化(Bayesian optimization,BO)算法和双向时序卷积网络(bidi...
光照的间歇性使光伏发电功率波动性较大,导致光伏发电功率的预测准确率较低。为此,提出一种基于连续变分模态分解(successive variational mode decomposition,SVMD)、贝叶斯优化(Bayesian optimization,BO)算法和双向时序卷积网络(bidirectional temporal convolutional network,BiTCN)的超短期光伏发电功率预测模型,以提高预测精度。首先,通过SVMD将原始光伏发电功率分解为多个功率分量和功率残差,以获得多个波动性小的序列;然后,使用改进的BiTCN代替单向时序卷积网络(temporal convolutional network,TCN),完成低耗时下SVMD分解结果的双向特征提取与预测;之后,使用BO算法高效寻找BiTCN超参数,从而提高BiTCN对各功率分量和功率残差的预测精度;最后,求和并重构预测结果,实现超短期光伏发电功率预测。实验证明,该模型与单一的TCN模型相比,均方根误差(root mean square error,RMSE)减小了35.18%,决定系数提升了4.82%。
展开更多
关键词
光伏发电
发电功率预测
深度学习模型
连续变分模态分解(SVMD)
下载PDF
职称材料
题名
基于SVMD-BO-BiTCN的超短期光伏发电功率预测
1
作者
何瑨麟
郝建新
苏成飞
屠壮壮
机构
中国民航大学电子信息与自动化学院
中国民航大学工程训练中心
中国民航大学航空工程学院
中国民航大学安全科学与工程学院
出处
《分布式能源》
2024年第5期22-31,共10页
基金
国家级大学生创新创业项目(202310059004)
中国民航大学大学生创新创业资助项目(IECAUC2023129)。
文摘
光照的间歇性使光伏发电功率波动性较大,导致光伏发电功率的预测准确率较低。为此,提出一种基于连续变分模态分解(successive variational mode decomposition,SVMD)、贝叶斯优化(Bayesian optimization,BO)算法和双向时序卷积网络(bidirectional temporal convolutional network,BiTCN)的超短期光伏发电功率预测模型,以提高预测精度。首先,通过SVMD将原始光伏发电功率分解为多个功率分量和功率残差,以获得多个波动性小的序列;然后,使用改进的BiTCN代替单向时序卷积网络(temporal convolutional network,TCN),完成低耗时下SVMD分解结果的双向特征提取与预测;之后,使用BO算法高效寻找BiTCN超参数,从而提高BiTCN对各功率分量和功率残差的预测精度;最后,求和并重构预测结果,实现超短期光伏发电功率预测。实验证明,该模型与单一的TCN模型相比,均方根误差(root mean square error,RMSE)减小了35.18%,决定系数提升了4.82%。
关键词
光伏发电
发电功率预测
深度学习模型
连续变分模态分解(SVMD)
Keywords
photovoltaic power generation
prediction of generating power
deep learning model
successive variational mode decomposition(SVMD)
分类号
TK51 [动力工程及工程热物理—热能工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于SVMD-BO-BiTCN的超短期光伏发电功率预测
何瑨麟
郝建新
苏成飞
屠壮壮
《分布式能源》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部