Highly efficient synthesis of clean biofuels using the bio-syngas obtained from biomass gasi- fication was performed over Fel.5CulZnlAllK0.117 catalyst. The maximum biofuel yield from the bio-syngas reaches about 1.59...Highly efficient synthesis of clean biofuels using the bio-syngas obtained from biomass gasi- fication was performed over Fel.5CulZnlAllK0.117 catalyst. The maximum biofuel yield from the bio-syngas reaches about 1.59 kg biofuels/(kgcat·rh) with a contribution of 0.57 kg alcohols/(kgcat·rh) and 1.02 kg liquid hydrocarbons/(kgcat·rh). The alcohol products in the resulting biofuels were dominated by the C2+ alcohols (mainly C2-C6 alcohols) with a content of 73.55%-89.98%. The selectivity .of the liquid hydrocarbons (C5+) in the hydrocarbon products ranges from 60.37% to 70.94%. The synthesis biofuels also possess a higher heat value of 40.53-41.49 MJ/kg. The effects of the synthesis conditions, including temperature, pressure, and gas hourly space velocity, on the biofuel synthesis were investigated in detail. The catalyst features were characterized by inductively coupled plasma and atomic emission spectroscopy, X-ray diffraction, temperature programmed reduction, and the N2 adsorption-desorption isotherms measurements. The present biofuel synthesis with a higher biofuel yield and a higher selectivity of liquid hydrocarbons and C2+ alcohols may be a potentially useful route to produce clean biofuels and chemicals from biomass.展开更多
基金This work was supported by the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), the National High Tech Research and Development Program (No.2009AA05Z435), and the National Natural Science Foundation of China (No.50772107).
文摘Highly efficient synthesis of clean biofuels using the bio-syngas obtained from biomass gasi- fication was performed over Fel.5CulZnlAllK0.117 catalyst. The maximum biofuel yield from the bio-syngas reaches about 1.59 kg biofuels/(kgcat·rh) with a contribution of 0.57 kg alcohols/(kgcat·rh) and 1.02 kg liquid hydrocarbons/(kgcat·rh). The alcohol products in the resulting biofuels were dominated by the C2+ alcohols (mainly C2-C6 alcohols) with a content of 73.55%-89.98%. The selectivity .of the liquid hydrocarbons (C5+) in the hydrocarbon products ranges from 60.37% to 70.94%. The synthesis biofuels also possess a higher heat value of 40.53-41.49 MJ/kg. The effects of the synthesis conditions, including temperature, pressure, and gas hourly space velocity, on the biofuel synthesis were investigated in detail. The catalyst features were characterized by inductively coupled plasma and atomic emission spectroscopy, X-ray diffraction, temperature programmed reduction, and the N2 adsorption-desorption isotherms measurements. The present biofuel synthesis with a higher biofuel yield and a higher selectivity of liquid hydrocarbons and C2+ alcohols may be a potentially useful route to produce clean biofuels and chemicals from biomass.