This paper tries to address the problem of binary CT image reconstruction in non-destructive detection with an algorithm based on compressed sensing(CS) and Otsu's method, which could reconstruct binary CT image o...This paper tries to address the problem of binary CT image reconstruction in non-destructive detection with an algorithm based on compressed sensing(CS) and Otsu's method, which could reconstruct binary CT image of test object from incomplete detection data. According to binary CT image characteristics, we employ Splitbregman method based on L1/2regularization to solve piecewise constant region reconstruction. To improve the reconstructed image quality from incomplete detection data, we utilize a priori knowledge and Otsu's method as the optimization constraint. In our study, we make numerical simulation to investigate our proposed method,and compare reconstructed results from different reconstruction methods. Finally, the experimental results demonstrate that the proposed method could effectively reduce noise and suppress artifacts, and reconstruct high-quality binary image from incomplete detection data.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.61401049 and 61201346)Postdoctoral Science Foundation of China(No.2014M560703)+1 种基金Chongqing Postdoctoral Science Foundation(No.Xm2014105)the Fundamental Research Funds for the Central Universities(Nos.CDJZR14125501 and 106112015CDJRC121103)
文摘This paper tries to address the problem of binary CT image reconstruction in non-destructive detection with an algorithm based on compressed sensing(CS) and Otsu's method, which could reconstruct binary CT image of test object from incomplete detection data. According to binary CT image characteristics, we employ Splitbregman method based on L1/2regularization to solve piecewise constant region reconstruction. To improve the reconstructed image quality from incomplete detection data, we utilize a priori knowledge and Otsu's method as the optimization constraint. In our study, we make numerical simulation to investigate our proposed method,and compare reconstructed results from different reconstruction methods. Finally, the experimental results demonstrate that the proposed method could effectively reduce noise and suppress artifacts, and reconstruct high-quality binary image from incomplete detection data.