期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
小型无人机振动特性对超声波传感器的影响 被引量:6
1
作者 岳学军 王健 +5 位作者 兰玉彬 岑振钊 刘永鑫 凌康杰 甘海明 王林惠 《华南农业大学学报》 CAS CSCD 北大核心 2016年第6期10-15,共6页
【目的】安全避障是目前无人机(Unmanned aerial vehicle,UAV)领域迫切需要解决的一个难题,利用超声波传感器是无人机避障的重要手段之一,针对无人机飞行过程中机械振动的特性以及对超声波测距传感器的影响进行了研究,以提高超声波测距... 【目的】安全避障是目前无人机(Unmanned aerial vehicle,UAV)领域迫切需要解决的一个难题,利用超声波传感器是无人机避障的重要手段之一,针对无人机飞行过程中机械振动的特性以及对超声波测距传感器的影响进行了研究,以提高超声波测距传感器的精准度,改善无人机作业稳定性。【方法】通过采集无人机不同油门开度的振动数据,进行多信号分析,得到无人机振动强度的空间和频域分布,并根据振动强度的空间分布,测定无人机振动对于超声波测距传感器的误差影响。【结果】随着离无人机中心距离的增加,无人机机臂上振动强度的空间分布存在减弱和加强交替出现的现象,离无人机中心最远处出现最大振动强度;振动幅度随着频率的增加而降低;无人机在载桨运行过程中对于机载超声波测距传感器水平测距影响最大,最大误差达到0.69 m,垂直方向的误差最大为0.20 m。【结论】随着离无人机中心距离和油门的增大,振动强度增大;调整传感器的振动频率可以减少无人机振动对传感器的影响。本研究结果为超声波传感器在农业无人机安全避障方面的应用提供了参考。 展开更多
关键词 小型无人机 振动特性 空间分布 超声波传感器 误差 农业航空
下载PDF
基于神经网络PID的无人机自适应变量喷雾系统的设计与试验 被引量:14
2
作者 岑振钊 岳学军 +3 位作者 王林惠 凌康杰 程子耀 卢杨 《华南农业大学学报》 CAS CSCD 北大核心 2019年第4期100-108,共9页
[目的]针对传统植保无人机在定量喷施作业时由于飞行速度的变化造成施药不均匀以及传统控制算法无法满足无人机变量喷雾系统所需的实时性和稳定性等问题,设计一种基于神经网络PID的自适应无人机变量喷雾系统。[方法]采用风压变送器测出... [目的]针对传统植保无人机在定量喷施作业时由于飞行速度的变化造成施药不均匀以及传统控制算法无法满足无人机变量喷雾系统所需的实时性和稳定性等问题,设计一种基于神经网络PID的自适应无人机变量喷雾系统。[方法]采用风压变送器测出无人机的飞行速度,根据速度采用脉宽调制(PWM)方法进行自适应变量喷雾,同步用流量传感器测出实际喷雾流量,融合BP神经网络PID控制算法调节喷雾流量。由MATLAB构建BP神经网络PID控制算法,并与PID、模糊PID和神经元PID对比及分析;田间试验过程中,对比分析无人机定量喷雾与随飞行速度改变的变量喷雾效果,采用水敏纸获取雾滴沉积量分布,分别从整体区域、飞行方向和喷杆方向评价沉积量分布的均匀性。[结果]算法仿真对比试验结果表明,与PID、模糊PID和神经元PID相比,BP神经网络PID阶跃响应上升时间分别少28.57%、84.73%和31.03%,正弦跟踪平均误差分别小63.01%、87.03%和0.58%,方波跟踪平均误差分别小74.00%、79.53%和6.80%,鲁棒性强,无静差,超调量为1.20%;喷雾对比试验结果表明,本系统能够根据飞行速度自适应调节喷雾流量,实际流量与目标流量的平均偏差为8.43%,水敏纸扫描结果表明总体区域雾滴沉积量的变异系数对比定量喷雾平均降低26.25%,喷杆方向平均降低18.79%。[结论]该研究结果可为农业航空变量喷雾技术的应用提供理论基础。 展开更多
关键词 无人机 风压变送器 自适应变量喷雾 神经网络PID
下载PDF
基于图像识别的无人机精准喷雾控制系统的研究 被引量:18
3
作者 王林惠 甘海明 +5 位作者 岳学军 兰玉彬 王健 刘永鑫 凌康杰 岑振钊 《华南农业大学学报》 CAS CSCD 北大核心 2016年第6期23-30,共8页
【目的】针对传统的植保无人机喷雾作业时化肥农药浪费大,利用率低,造成环境污染的问题,研制一种基于图像识别的无人机精准喷雾控制系统。【方法】利用中值滤波算法对田间航拍图像进行去噪,采用分层K_means硬聚类算法实现对农田航拍图... 【目的】针对传统的植保无人机喷雾作业时化肥农药浪费大,利用率低,造成环境污染的问题,研制一种基于图像识别的无人机精准喷雾控制系统。【方法】利用中值滤波算法对田间航拍图像进行去噪,采用分层K_means硬聚类算法实现对农田航拍图像的分割,提取非作物区域的颜色、纹理特征空间的22个特征参数,设计支持向量机分类器进行分类识别。根据优选的17个特征参数,利用以径向基函数作为核函数的支持向量机对非作物区域图像进行识别,并根据识别结果控制喷头,实现精准喷雾。【结果】测试样本的识别率可达为76.56%,在无干扰风场情况下,当P_阀为10%时,减施率可达32.7%。【结论】本系统为农业航空精准喷雾控制技术的应用提供了参考方向和决策支持。 展开更多
关键词 支持向量机 无人机 图像识别 精准喷雾
下载PDF
基于深度学习的龙眼叶片叶绿素含量预测的高光谱反演模型 被引量:16
4
作者 甘海明 岳学军 +3 位作者 洪添胜 凌康杰 王林惠 岑振钊 《华南农业大学学报》 CAS CSCD 北大核心 2018年第3期102-110,共9页
【目的】探讨龙眼Dimocarpus longan Lour.叶片发育过程中叶绿素含量二维分布变化规律,实现无损检测病虫害对叶片叶绿素含量分布的影响,为评估嫩叶抗寒能力、龙眼结果期的施肥量和老熟叶的修剪提供参考。【方法】利用高光谱成像仪采集... 【目的】探讨龙眼Dimocarpus longan Lour.叶片发育过程中叶绿素含量二维分布变化规律,实现无损检测病虫害对叶片叶绿素含量分布的影响,为评估嫩叶抗寒能力、龙眼结果期的施肥量和老熟叶的修剪提供参考。【方法】利用高光谱成像仪采集龙眼叶片在369~988 nm区间的高光谱图像,自动提取感兴趣区域,利用分光光度法测定叶片叶绿素含量。基于皮尔森相关系数(r)分析了龙眼叶片生长过程中各波段光谱响应与叶绿素含量之间相关性,建立偏最小二乘回归模型。分析了特征波段图像纹理特征与叶绿素含量相关性,将光谱特征和纹理特征结合导入深度学习中的稀疏自编码(SAE)模型预测龙眼叶片叶绿素含量,结合"图谱信息"的SAE模型预测龙眼叶片叶绿素含量的分布情况。【结果】龙眼叶片3个生长发育期相关系数的曲线均在700 nm附近出现波峰,嫩叶、成熟叶和老熟叶3个阶段相关性最高的波长分别为692、698和705 nm;全发育期的最敏感波段相关性远高于3个生长发育期,r达到0.890 3。回归模型中,吸收带最小反射率位置和吸收带反射率总和建立的最小二乘回归模型预测效果最好(R_c^2=0.856 8,RMSEc=0.219 5;R_v^2=0.771 2,RMSEv=0.286 2),其校正集和验证集的决定系数均高于单一参数建立的预测模型。在所有预测模型中,结合"图谱信息"的SAE模型预测效果最好(R_c^2=0.979 6,RMSEc=0.171 2;R_v^2=0.911 2,RMSEv=0.211 5),且预测性能受叶片成熟度影响相对较小,3个生长阶段R_v^2的标准偏差仅为最小二乘回归模型标准偏差的29.9%。【结论】提出了一种自动提取感兴趣区域的方法,成功率为100%。基于光谱特征的回归模型对不同生长阶段的叶片预测效果变化较大,而基于"图谱信息"融合的SAE模型预测性能受叶片成熟度影响相对较小且预测精度较高,SAE模型适用于不同成熟度的龙眼叶片叶绿素含量分布预测。 展开更多
关键词 龙眼叶片 高光谱成像 叶绿素含量 光谱特征 图像纹理特征 反演
下载PDF
基于高光谱和深度迁移学习的柑橘叶片钾含量反演 被引量:21
5
作者 岳学军 凌康杰 +3 位作者 王林惠 岑振钊 卢杨 刘永鑫 《农业机械学报》 EI CAS CSCD 北大核心 2019年第3期186-195,共10页
针对传统柑橘叶片钾含量检测方法耗时费力、操作繁琐且损伤叶片等弊端,引入高光谱信息探索柑橘叶片钾含量快速无损检测与预测模型,选用ASD Field Spec 3光谱仪采集柑橘4个重要物候期(萌芽期、稳果期、壮果促梢期和采果期)的叶片反射光谱... 针对传统柑橘叶片钾含量检测方法耗时费力、操作繁琐且损伤叶片等弊端,引入高光谱信息探索柑橘叶片钾含量快速无损检测与预测模型,选用ASD Field Spec 3光谱仪采集柑橘4个重要物候期(萌芽期、稳果期、壮果促梢期和采果期)的叶片反射光谱,同步采用火焰光度法测定叶片的钾含量;先用正交试验确定小波去噪的最佳去噪参数组合,再进行不同光谱形式变换,对不同物候期光谱进行基于堆栈稀疏编码机-深度学习网络(Stacked sparse autoencoder-deep learning networks,SSAE-DLNs)的特征提取迁移和融合多种特征,对比支持向量机回归、偏最小二乘法回归、广义神经网络、逐步多元线性回归等多种诊断模型,结果表明,模型SSAE-DLNs基于一阶微分光谱特征建立全生长期钾含量预测模型的性能最优,其校正集和验证集决定系数分别为0. 898 8、0. 877 1,均方根误差分别为0. 544 3、0. 552 8。试验表明,深度迁移学习网络可对柑橘叶片钾含量进行精确预测,为高光谱检测技术用于柑橘树长势监测和营养诊断提供了参考。 展开更多
关键词 柑橘叶片 钾含量 深度迁移学习 堆栈稀疏自动编码机 高光谱 支持向量回归
下载PDF
基于深度卷积神经网络的水稻田杂草识别研究 被引量:17
6
作者 彭文 兰玉彬 +5 位作者 岳学军 程子耀 王林惠 岑振钊 卢杨 洪金宝 《华南农业大学学报》 CAS CSCD 北大核心 2020年第6期75-81,共7页
【目的】利用深度卷积神经网络对水稻田杂草进行准确、高效、无损识别,得出最优的网络模型,为水稻田种植管理以及无人机变量喷施提供理论依据。【方法】以水稻田杂草为主要研究对象,利用CCD感光相机采集杂草图像样本,构建水稻田杂草数据... 【目的】利用深度卷积神经网络对水稻田杂草进行准确、高效、无损识别,得出最优的网络模型,为水稻田种植管理以及无人机变量喷施提供理论依据。【方法】以水稻田杂草为主要研究对象,利用CCD感光相机采集杂草图像样本,构建水稻田杂草数据集(PFMW)。利用多种结构的深度卷积神经网络对PFMW数据集进行特征的自动提取,并进行建模与试验。【结果】在各深度模型对比试验中,VGG16模型取得了最高精度,其在鬼针草、鹅肠草、莲子草、千金子、鳢肠和澎蜞菊6种杂草中的F值分别为0.957、0.931、0.955、0.955、0.923和0.992,其平均F值为0.954。在所设置的深度模型优化器试验中,VGG16-SGD模型取得了最高精度,其在上述6种杂草中的F值分别为0.987、0.974、0.965、0.967、0.989和0.982,其平均F值为0.977。在PFMW数据集的样本类别数量均衡试验中,无失衡杂草数据集训练出来的VGG16深度模型的准确率为0.900,而16.7%、33.3%和66.6%类别失衡的数据集训练的模型准确率分别为0.888、0.866和0.845。【结论】利用机器视觉能够准确识别水稻田杂草,这对于促进水稻田精细化耕作以及无人机变量喷施等方面具有重要意义,可以有效地协助农业种植过程中的杂草防治工作。 展开更多
关键词 机器视觉 稻田杂草 深度卷积神经网络 模型优化器
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部