针对薄板非线性迭代计算量很大的问题,依据von Kárman薄板非线性理论构造能量泛函,并用数值积分和数值微分进行离散,得到非线性方程组,从而利用求积元法(Quadrature Element Method,QEM)求解薄板的中等挠度的弯曲和非线性屈曲问题...针对薄板非线性迭代计算量很大的问题,依据von Kárman薄板非线性理论构造能量泛函,并用数值积分和数值微分进行离散,得到非线性方程组,从而利用求积元法(Quadrature Element Method,QEM)求解薄板的中等挠度的弯曲和非线性屈曲问题,得到可信的结果.算例表明:在处理薄板几何非线性问题上,QEM计算效率很高,应用潜力很大.展开更多
文摘针对薄板非线性迭代计算量很大的问题,依据von Kárman薄板非线性理论构造能量泛函,并用数值积分和数值微分进行离散,得到非线性方程组,从而利用求积元法(Quadrature Element Method,QEM)求解薄板的中等挠度的弯曲和非线性屈曲问题,得到可信的结果.算例表明:在处理薄板几何非线性问题上,QEM计算效率很高,应用潜力很大.