期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于HRNet和ASFF的特征融合目标检测算法
1
作者 陈志旺 李宗轩 +2 位作者 吕昌昊 岳会安 彭勇 《控制与决策》 EI 2024年第10期3207-3215,共9页
目标检测是计算机视觉领域中的一个重要研究方向,针对目标检测算法中存在的模型庞大、多尺度目标检测等问题,基于HRNet (high resolution net)和自适应空间特征融合(adaptively spatial feature fusion, ASFF)提出一种多尺度特征融合目... 目标检测是计算机视觉领域中的一个重要研究方向,针对目标检测算法中存在的模型庞大、多尺度目标检测等问题,基于HRNet (high resolution net)和自适应空间特征融合(adaptively spatial feature fusion, ASFF)提出一种多尺度特征融合目标检测算法.首先,利用通道拆分(channel split)操作和深度可分离卷积(depthwise separable convolution, Dwconv)改进HRNet的基础模块,结合CSPNet改进HRNet的分支结构,减少模型的参数量,在得到轻量化L-HRNet三个分支后使用空间特征金字塔EESP (extremely efficient spatial pyramid)模块获得不同感受野大小特征,并将其融合后加强特征;其次,使用ASFF模块自适应融合EESP模块输出多尺度特征,该模块为3个分支的特征分配不同的特征融合权重,自适应融合重要的空间特征;最后,引入SIoU (shape-aware IoU)作为边界框定位损失函数,综合考量边界框回归之间的角度关系、中心点距离关系以及边界框的形状关系,使得预测框与真实框之间的损失度量更加准确,整体参数量为5.7 M,在公开数据集PASCAL VOC上达到了85.1%的mAP,在MS COCO上的实验结果表明, mAP0.5-0.95达到了38.7%,在模型参数量较少的同时保持了较高的检测性能. 展开更多
关键词 深度学习 目标检测 多尺度检测 特征金字塔 特征融合 HRNet CSPNet SIoU
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部