期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于U-Net深度神经网络的地震数据去噪研究 被引量:6
1
作者 张攀龙 李尧 +4 位作者 张田涛 岳景杭 董锐 曹帅 张庆松 《金属矿山》 CAS 北大核心 2020年第1期200-208,共9页
在能源和矿产资源开采中,大规模采空区塌陷不仅威胁了矿区工人和设备的安全,同时也制约了矿区的经济效益。当前,地震波反射法是探测隐伏采空区的一种常用方法。但在实际探测过程中获取的地震数据往往含有大量随机噪声,这些噪声会为后续... 在能源和矿产资源开采中,大规模采空区塌陷不仅威胁了矿区工人和设备的安全,同时也制约了矿区的经济效益。当前,地震波反射法是探测隐伏采空区的一种常用方法。但在实际探测过程中获取的地震数据往往含有大量随机噪声,这些噪声会为后续数据处理和成像环节带来较大干扰,因此对数据进行随机噪声压制和去除通常是地震数据处理的首要工作。采用改进后的U-Net深度神经网络作为去噪手段,在输入端除了加入一层含有高斯白噪声的地表激发地表接收的多道地震信号外,另一层则添加深度加权信息以充分挖掘深部反射信号。在中间层,通过压缩通道提取数据特征并通过扩展通道还原数据细节信息,构成由含噪数据到去噪数据的非线性映射,最终输出去噪结果。该网络的数据集由随机生成的大量地质模型正演数据组成,在GPU环境下使用Pytorch进行训练,并将最终结果与传统F-X滤波结果进行对比。结果表明:从多人主观打分评价以及基于结构相似性指标和信噪比指标的客观评价结果来看,采用U-Net深度神经网络得到的数据去噪效果明显优于传统F-X滤波结果。 展开更多
关键词 地震数据去噪 金属矿采空区探测 深度学习 神经网络
下载PDF
一种基于卷积网络的地震探测数据随机噪声去除方法 被引量:9
2
作者 高有湖 岳景杭 +2 位作者 孔军 李铎 王清扬 《科学技术与工程》 北大核心 2021年第1期103-108,共6页
为有效提高地震数据信噪比,通过卷积神经网络(convolutional neural network,CNN)的方法研究了地震勘探数据去除随机噪声问题。该方法包含17个卷积层,使用线性整流(rectified linear unit,ReLU)激活函数避免梯度消失,使用批量标准化(bat... 为有效提高地震数据信噪比,通过卷积神经网络(convolutional neural network,CNN)的方法研究了地震勘探数据去除随机噪声问题。该方法包含17个卷积层,使用线性整流(rectified linear unit,ReLU)激活函数避免梯度消失,使用批量标准化(batch normalization,BN)提高网络的泛化能力。所构建的网络应用残差学习策略,即输入为含噪地震正演叠前数据,输出为CNN网络学习获得的随机噪声。然后从地震记录中减去网络预测的噪声数据,从而达到去除随机噪声的目的。同时,根据地震勘探数据振幅随探测时间衰减的规律,在网络训练过程中进行深度加权,使得CNN对于深部噪声的学习效果更好。网络在PyTorch框架下训练,应用图形处理器并行计算可以有效提高网络训练速度。利用训练好的网络进行去噪实验,结果表明与传统的时空域预测滤波法相比,该网络能更好地压制随机噪声。可见针对地震勘探数据,CNN能够有效提取含噪数据中的噪声信息,证明了该方法在去除随机噪声方面的合理性与有效性。 展开更多
关键词 卷积神经网络 随机噪声 深度加权 残差学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部