利用体检数据预测肌少症的患病风险,探索预测肌少症的重要因素,以实现肌少症的早期诊断.基于2019年上海某医院的5641名人员的体检数据,利用Wilcoxon秩和检验和卡方检验找出差异显著的特征,使用8种机器学习方法对是否患有肌少症进行预测...利用体检数据预测肌少症的患病风险,探索预测肌少症的重要因素,以实现肌少症的早期诊断.基于2019年上海某医院的5641名人员的体检数据,利用Wilcoxon秩和检验和卡方检验找出差异显著的特征,使用8种机器学习方法对是否患有肌少症进行预测.采用受试者操作曲线下面积(AUC)评价模型预测效果,建立较优的肌少症预测模型,并利用特征评分寻找预测肌少症的重要因素.LightGBM(Light-gradient boosting machine)、随机森林和逻辑回归预测效果较优,测试集AUC值达到0.93以上.模型确定了年龄、体质量、身高、身体质量指数(body mass index,BMI)、腰围、臀围、舒张压以及平均红细胞血红蛋白量、高密度脂蛋白、平均红细胞体积、红细胞、甘油三酯是预测肌少症的重要因素,体格检查、血检指标、血常规、肝肾功能、生活习惯和一般信息是预测肌少症重要体检项目.文章建立了有效的肌少症患病风险预测模型,确定了预测肌少症的重要因素和体检项目,在一定程度上有助于肌少症患者的管理.展开更多
文摘利用体检数据预测肌少症的患病风险,探索预测肌少症的重要因素,以实现肌少症的早期诊断.基于2019年上海某医院的5641名人员的体检数据,利用Wilcoxon秩和检验和卡方检验找出差异显著的特征,使用8种机器学习方法对是否患有肌少症进行预测.采用受试者操作曲线下面积(AUC)评价模型预测效果,建立较优的肌少症预测模型,并利用特征评分寻找预测肌少症的重要因素.LightGBM(Light-gradient boosting machine)、随机森林和逻辑回归预测效果较优,测试集AUC值达到0.93以上.模型确定了年龄、体质量、身高、身体质量指数(body mass index,BMI)、腰围、臀围、舒张压以及平均红细胞血红蛋白量、高密度脂蛋白、平均红细胞体积、红细胞、甘油三酯是预测肌少症的重要因素,体格检查、血检指标、血常规、肝肾功能、生活习惯和一般信息是预测肌少症重要体检项目.文章建立了有效的肌少症患病风险预测模型,确定了预测肌少症的重要因素和体检项目,在一定程度上有助于肌少症患者的管理.