鉴于现有的火灾检测手段大多依赖于感温探测器和感烟探测器,但感温探测器和感烟探测器的探测具有一定的滞后性,无法实时准确地检测出初期火灾的问题,因此,构建了一个大规模多场景的火灾图像数据集;同时对图像数据集进行了火焰和烟雾目...鉴于现有的火灾检测手段大多依赖于感温探测器和感烟探测器,但感温探测器和感烟探测器的探测具有一定的滞后性,无法实时准确地检测出初期火灾的问题,因此,构建了一个大规模多场景的火灾图像数据集;同时对图像数据集进行了火焰和烟雾目标标注,并提出了一种具有注意力机制的火灾检测算法,采用颜色分析的方法检测出图像中火焰和烟雾的疑似区域;再对火焰和烟雾目标的疑似区域进行关注,通过结合深度网络的特征提取能力,得到火灾目标的检测模型;实验结果表明,此方法在检测火灾任务上取得了更优的效果,相比于基于YOLOv3的火灾检测模型,mAP(mean average precision)提高了5.9%,同时满足了实时检测的需求。展开更多
文摘鉴于现有的火灾检测手段大多依赖于感温探测器和感烟探测器,但感温探测器和感烟探测器的探测具有一定的滞后性,无法实时准确地检测出初期火灾的问题,因此,构建了一个大规模多场景的火灾图像数据集;同时对图像数据集进行了火焰和烟雾目标标注,并提出了一种具有注意力机制的火灾检测算法,采用颜色分析的方法检测出图像中火焰和烟雾的疑似区域;再对火焰和烟雾目标的疑似区域进行关注,通过结合深度网络的特征提取能力,得到火灾目标的检测模型;实验结果表明,此方法在检测火灾任务上取得了更优的效果,相比于基于YOLOv3的火灾检测模型,mAP(mean average precision)提高了5.9%,同时满足了实时检测的需求。