随着人工智能和无人驾驶等相关学科的快速发展,煤矿装备的智能化和无人化成为了新的趋势。智能设备的应用将大幅提高煤矿作业的生产力以及人员安全性。露天煤矿地形复杂,与城市环境相比无明显的几何特征,具有分段相似性,利用现有以激光...随着人工智能和无人驾驶等相关学科的快速发展,煤矿装备的智能化和无人化成为了新的趋势。智能设备的应用将大幅提高煤矿作业的生产力以及人员安全性。露天煤矿地形复杂,与城市环境相比无明显的几何特征,具有分段相似性,利用现有以激光雷达为主的同时定位与建图(Simultaneous Localization and Mapping,SLAM)方案在该环境下易出现定位漂移和建图误差较大等现象。针对上述问题,提出了一种基于激光雷达(Light Detection and Ranging,LiDAR)和惯导(Inertial Measurement Unit,IMU)紧耦合的SLAM算法,该算法使用LiDAR和IMU两种传感器作为数据输入,对数据进行预处理,前端利用迭代扩展卡尔曼滤波器将预处理后的LiDAR特征点与IMU数据相融合,并使用后向传播来矫正雷达运动畸变,后端利用雷达相对位姿因子将LiDAR帧间配准结果作为约束因子与回环因子共同完成全局因子图优化。利用开源数据集和露天煤矿实地数据集验证了算法的鲁棒性和精确性。试验结果表明在城市结构化环境中文中所提算法与当前激光SLAM算法精度保持一致,而针对长达两千多米的露天煤矿实地环境,所提算法较FAST-LIO2、LIO-SAM紧耦合算法在定位精度上分别提高了46.00%和23.15%,且具有更高的鲁棒性。展开更多
针对煤矿井下无线信道的信号传播模型,提出将接收信号强度复合滤波器、一元线性回归测距模型和多边定位方法相结合的改进接收信号强度指示(Received Signal Strength Indicator,RSSI)值的井下定位技术,通过利用基于无线传感器网络操作系...针对煤矿井下无线信道的信号传播模型,提出将接收信号强度复合滤波器、一元线性回归测距模型和多边定位方法相结合的改进接收信号强度指示(Received Signal Strength Indicator,RSSI)值的井下定位技术,通过利用基于无线传感器网络操作系统TinyOS的节点进行离线建模、在线测算,实现煤矿井下人员及设备的实时定位。井下巷道试验表明,该技术提高了定位精度,增强了定位系统的鲁棒性,适用于煤矿井下定位。展开更多
文摘随着人工智能和无人驾驶等相关学科的快速发展,煤矿装备的智能化和无人化成为了新的趋势。智能设备的应用将大幅提高煤矿作业的生产力以及人员安全性。露天煤矿地形复杂,与城市环境相比无明显的几何特征,具有分段相似性,利用现有以激光雷达为主的同时定位与建图(Simultaneous Localization and Mapping,SLAM)方案在该环境下易出现定位漂移和建图误差较大等现象。针对上述问题,提出了一种基于激光雷达(Light Detection and Ranging,LiDAR)和惯导(Inertial Measurement Unit,IMU)紧耦合的SLAM算法,该算法使用LiDAR和IMU两种传感器作为数据输入,对数据进行预处理,前端利用迭代扩展卡尔曼滤波器将预处理后的LiDAR特征点与IMU数据相融合,并使用后向传播来矫正雷达运动畸变,后端利用雷达相对位姿因子将LiDAR帧间配准结果作为约束因子与回环因子共同完成全局因子图优化。利用开源数据集和露天煤矿实地数据集验证了算法的鲁棒性和精确性。试验结果表明在城市结构化环境中文中所提算法与当前激光SLAM算法精度保持一致,而针对长达两千多米的露天煤矿实地环境,所提算法较FAST-LIO2、LIO-SAM紧耦合算法在定位精度上分别提高了46.00%和23.15%,且具有更高的鲁棒性。
文摘针对煤矿井下无线信道的信号传播模型,提出将接收信号强度复合滤波器、一元线性回归测距模型和多边定位方法相结合的改进接收信号强度指示(Received Signal Strength Indicator,RSSI)值的井下定位技术,通过利用基于无线传感器网络操作系统TinyOS的节点进行离线建模、在线测算,实现煤矿井下人员及设备的实时定位。井下巷道试验表明,该技术提高了定位精度,增强了定位系统的鲁棒性,适用于煤矿井下定位。