超大规模天线阵列在近期取得了快速发展并有望在未来无线通信,尤其是在中频和毫米波频段取得广泛应用。随着天线孔径的提升,近场效应变得更为明显和突出,因此传统远场平面波假设不再适用。为更准确地对近场通信进行性能评估,建立准确反...超大规模天线阵列在近期取得了快速发展并有望在未来无线通信,尤其是在中频和毫米波频段取得广泛应用。随着天线孔径的提升,近场效应变得更为明显和突出,因此传统远场平面波假设不再适用。为更准确地对近场通信进行性能评估,建立准确反映近场信道特性的信道模型尤为关键,基于电磁理论和物理光学,建立了一般散射体的散射模型。通过对近场散射体散射特性的研究,分析了非视距(Non-Line of Sight,NLoS)径信道状态的变化特点以及近场场景中的空间非平稳(Spatial Non-Stationary,SNS)特征。基于大规模收发天线阵元间空间一致性特性,结合散射体散射特性,设计了基于空间一致性的近场信道参数生成方法,并提出一种衰减因子计算方法,用以表征空间非平稳特性。在3GPP标准信道建模流程基础上,设计了一种适用于近场电磁波传播的信道模型。提出的信道模型同时建模了球面波和空间非平稳特性对近场通信的影响,可准确评估近场通信性能,为近场码本设计、波束成型等技术的发展打下基础。展开更多
文摘超大规模天线阵列在近期取得了快速发展并有望在未来无线通信,尤其是在中频和毫米波频段取得广泛应用。随着天线孔径的提升,近场效应变得更为明显和突出,因此传统远场平面波假设不再适用。为更准确地对近场通信进行性能评估,建立准确反映近场信道特性的信道模型尤为关键,基于电磁理论和物理光学,建立了一般散射体的散射模型。通过对近场散射体散射特性的研究,分析了非视距(Non-Line of Sight,NLoS)径信道状态的变化特点以及近场场景中的空间非平稳(Spatial Non-Stationary,SNS)特征。基于大规模收发天线阵元间空间一致性特性,结合散射体散射特性,设计了基于空间一致性的近场信道参数生成方法,并提出一种衰减因子计算方法,用以表征空间非平稳特性。在3GPP标准信道建模流程基础上,设计了一种适用于近场电磁波传播的信道模型。提出的信道模型同时建模了球面波和空间非平稳特性对近场通信的影响,可准确评估近场通信性能,为近场码本设计、波束成型等技术的发展打下基础。