期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于迁移学习的卷积神经网络SAR图像目标识别 被引量:17
1
作者 陈立福 武鸿 +2 位作者 崔先亮 郭正华 贾智伟 《中国空间科学技术》 EI CSCD 北大核心 2018年第6期45-51,共7页
针对卷积神经网络中因网络参数随机初始化和参数过多导致的收敛速度慢及过拟合的问题,提出了一种基于迁移学习监督式预训练的卷积神经网络。首先,引入迁移学习的思想,采用小规模数据集作为源域的训练样本,针对源域中源任务进行监督式训... 针对卷积神经网络中因网络参数随机初始化和参数过多导致的收敛速度慢及过拟合的问题,提出了一种基于迁移学习监督式预训练的卷积神经网络。首先,引入迁移学习的思想,采用小规模数据集作为源域的训练样本,针对源域中源任务进行监督式训练得到预训练模型;然后,构建一个多层的卷积神经网络作为目标域中目标任务的待训练网络,将源域中获得的预训练模型作为该网络的初始参数,大规模数据作为目标域的训练样本进行网络的微调,通过这种基于特征选择的迁移学习,实现源域到目标域的特征信息迁移;针对卷积神经网络中全连接层参数过多的问题,采用卷积层替代全连接层。试验使用美国国防高等研究计划署的移动与静止目标搜索识别(Moving and Stationary Target Acquisition and Recognition,MSTAR)数据集中三类目标数据作为源域样本,十类目标数据作为目标域样本,结果表明该算法的十类目标识别精度达到了99.13%,且具有更快的误差收敛速度。 展开更多
关键词 迁移学习 卷积神经网络 深度学习 合成孔径雷达 预训练模型
下载PDF
基于CNN的SAR图像目标和场景分类算法 被引量:4
2
作者 陈立福 武鸿 +2 位作者 崔先亮 郭正华 贾智伟 《雷达科学与技术》 北大核心 2018年第6期627-632,共6页
随着合成孔径雷达(Synthetic Aperture Radar,SAR)成像技术的发展和SAR图像数据的急剧增加,SAR图像解译技术成为了当前的研究热点。针对SAR图像的目标和场景分类问题,提出了一种改进的基于卷积神经网络的图像分类算法。为克服卷积神经... 随着合成孔径雷达(Synthetic Aperture Radar,SAR)成像技术的发展和SAR图像数据的急剧增加,SAR图像解译技术成为了当前的研究热点。针对SAR图像的目标和场景分类问题,提出了一种改进的基于卷积神经网络的图像分类算法。为克服卷积神经网络训练过程中因数据量不足而出现的过拟合问题,采用数据增强人工增加训练样本的大小;针对高层卷积层参数过多的问题,采用一种多尺度卷积模块替代高层的卷积层;在输出层采用卷积和全局均值池化的组合替代传统的全连接层,大幅度减少了网络参数。网络训练阶段,通过误差反向传播来更新网络参数。针对MSTAR数据集和高分辨率的机载SAR图像分别进行目标及场景分类,实验结果表明该算法实现了较好的分类性能。 展开更多
关键词 卷积神经网络 深度学习 合成孔径雷达 误差反向传播
下载PDF
基于空间特征重标定网络的遥感图像场景分类 被引量:1
3
作者 刘燕芝 陈立福 +2 位作者 崔先亮 袁志辉 邢学敏 《计算机工程》 CAS CSCD 北大核心 2020年第1期229-235,共7页
为充分利用遥感图像的场景信息,提高场景分类的正确率,提出一种基于空间特征重标定网络的场景分类方法。采用多尺度全向高斯导数滤波器获取遥感图像的空间特征,通过引入可分离卷积与附加动量法构建特征重标定网络,利用全连接层形成的瓶... 为充分利用遥感图像的场景信息,提高场景分类的正确率,提出一种基于空间特征重标定网络的场景分类方法。采用多尺度全向高斯导数滤波器获取遥感图像的空间特征,通过引入可分离卷积与附加动量法构建特征重标定网络,利用全连接层形成的瓶颈结构学习特征通道间的相关性,对多尺度空间特征进行权重筛选以实现特征重标定,并结合卷积神经网络训练得到最终的分类结果。实验结果表明,该方法在UCM_LandUse与机载SAR图像数据上的分类正确率分别达到94.76%和95.38%,与MNCC、MS-DCNN、PCA-CNN等算法相比,其遥感图像分类精度与泛化能力显著提升。 展开更多
关键词 遥感图像 场景分类 多尺度空间特征 特征重标定 卷积神经网络
下载PDF
基于频带特征融合的GL-CNN遥感图像场景分类 被引量:2
4
作者 崔先亮 陈立福 +1 位作者 邢学敏 袁志辉 《遥感技术与应用》 CSCD 北大核心 2019年第4期712-719,共8页
高分辨率卫星遥感图像场景信息的分类对影像分析和解译具有重要意义,传统的高分辨卫星遥感图像场景分类方法主要依赖于人工提取的中、低层特征且不能很好的利用图像丰富的场景信息,针对这一问题,提出一种基于频带特征融合与GL-CNN(Guide... 高分辨率卫星遥感图像场景信息的分类对影像分析和解译具有重要意义,传统的高分辨卫星遥感图像场景分类方法主要依赖于人工提取的中、低层特征且不能很好的利用图像丰富的场景信息,针对这一问题,提出一种基于频带特征融合与GL-CNN(Guided Learning Convolutional Neural Network,指导学习卷积神经网络)的分类方法。首先通过NSWT(Non-Subsampled Wavelet Transform,非下采样小波变换)提取出图像的高低频子带,将高频子带进行频带特征融合得到融合高频子带,然后联合频谱角向能量分布曲线的平稳区间分析实现融合高频子带与低频子带的样本融合,最后指导卷积神经网络自动提取图像的高低频子带包含的高层特征来实现场景分类。通过对UCM_LandUse 21类数据进行试验表明,本文方法的分类正确率达到94.52%,相比以往算法有显著提高。 展开更多
关键词 非下采样小波变换 频带特征融合 指导学习 样本融合 场景分类
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部