为解决储能单元在工作过程中产生的荷电状态(state of charge,SOC)不均衡问题,提出了一种基于指数型下垂控制的改进SOC均衡方案。该方案将指数型下垂控制中的放大因子n与储能单元间的SOC差值建立函数关系,使其能够跟随储能单元间的SOC...为解决储能单元在工作过程中产生的荷电状态(state of charge,SOC)不均衡问题,提出了一种基于指数型下垂控制的改进SOC均衡方案。该方案将指数型下垂控制中的放大因子n与储能单元间的SOC差值建立函数关系,使其能够跟随储能单元间的SOC差值变化由小到大连续增大,提高了SOC的均衡速度,也解决了均衡过程中功率响应速度和功率收敛速度两者不可兼顾的问题,同时在下垂系数中引入容量权重因子,消除了容量对SOC均衡的影响。最后,在MATLAB/Simulink中搭建了相关模型并仿真验证了所提方案的正确性和有效性。展开更多
为解决超级电容能量密度小、在运行过程中荷电状态(state of charge,SOC)容易越限的问题,对传统低通滤波法进行改进,提出考虑超级电容SOC的功率分配策略。该方法依据超级电容的SOC划分5个不同的工作区域,并以超级电容的SOC作为变量,在...为解决超级电容能量密度小、在运行过程中荷电状态(state of charge,SOC)容易越限的问题,对传统低通滤波法进行改进,提出考虑超级电容SOC的功率分配策略。该方法依据超级电容的SOC划分5个不同的工作区域,并以超级电容的SOC作为变量,在不同工作区域同滤波时间常数建立相应的函数关系,之后根据SOC的变化动态调整滤波时间常数,实现蓄电池和超级电容之间功率的合理分配,保证超级电容SOC维持在合理范围内。最后,在Matlab/Simulink中搭建相关模型并仿真验证所提方案的正确性和有效性。仿真结果表明,同传统低通滤波法相比,该方法可在平抑功率波动的同时,根据超级电容的SOC合理分配超级电容和蓄电池的功率需求,使超级电容的SOC自行恢复,防止其过充过放,提高了直流微电网系统运行的经济性和稳定性。展开更多
文摘为解决储能单元在工作过程中产生的荷电状态(state of charge,SOC)不均衡问题,提出了一种基于指数型下垂控制的改进SOC均衡方案。该方案将指数型下垂控制中的放大因子n与储能单元间的SOC差值建立函数关系,使其能够跟随储能单元间的SOC差值变化由小到大连续增大,提高了SOC的均衡速度,也解决了均衡过程中功率响应速度和功率收敛速度两者不可兼顾的问题,同时在下垂系数中引入容量权重因子,消除了容量对SOC均衡的影响。最后,在MATLAB/Simulink中搭建了相关模型并仿真验证了所提方案的正确性和有效性。
文摘为解决超级电容能量密度小、在运行过程中荷电状态(state of charge,SOC)容易越限的问题,对传统低通滤波法进行改进,提出考虑超级电容SOC的功率分配策略。该方法依据超级电容的SOC划分5个不同的工作区域,并以超级电容的SOC作为变量,在不同工作区域同滤波时间常数建立相应的函数关系,之后根据SOC的变化动态调整滤波时间常数,实现蓄电池和超级电容之间功率的合理分配,保证超级电容SOC维持在合理范围内。最后,在Matlab/Simulink中搭建相关模型并仿真验证所提方案的正确性和有效性。仿真结果表明,同传统低通滤波法相比,该方法可在平抑功率波动的同时,根据超级电容的SOC合理分配超级电容和蓄电池的功率需求,使超级电容的SOC自行恢复,防止其过充过放,提高了直流微电网系统运行的经济性和稳定性。