Advancing our understanding of global climate,particularly in polar regions,requires accurate detection of carbon dioxide(CO_(2))in ice cores and deep sea environments.However,detecting trace levels of CO_(2)in these ...Advancing our understanding of global climate,particularly in polar regions,requires accurate detection of carbon dioxide(CO_(2))in ice cores and deep sea environments.However,detecting trace levels of CO_(2)in these areas presents significant challenges.We introduce a novel preconcentration approach using functionalized zeolitic imidazolate framework,ZIF-8(CN),for the detection of ultra-low CO_(2).ZIF-8(CN)has small pores(4.4■and cyano groups(–CN),enabling highly selective adsorption of CO_(2)(36.2 cm^(3)g^(−1))over N_(2)(1.6 cm^(3)g^(−1))at 298 K.The mechanism involves unique–CN···CO_(2)···–CN interactions within the pore structure.When cast into a film on an aluminum substrate,ZIF-8(CN)demonstrates exceptional CO_(2)preconcentration capability(1 ppm in N_(2))with an extraordinary preconcentration factor of 748,outperforming traditional ZIF and zeolite materials.Additionally,a ZIF-8(CN)preconcentrator is designed and fabricated with bionic gas flow of fractal structure which optimizes the gas-film contact,and thus its performance is further improved by 115%.展开更多
基金supported by the National Natural Science Foundation of China(22375031,22131004,U21A20330,U22A20184 and 22208224)National Key R&D Program of China(2022YFB3805902 and 2023YFC2812603)+4 种基金“111”Program(B18012)Jilin Natural Science Fund for Excellent Young Scholars(20230508116RC)Science&Technology Department of Jilin Province(20230101023JC)Fundamental Research Funds for the Central Universities(JGPY202103 and 2412023YQ001)Excellent Youth Lift Plan from Shenyang University of Chemical Technology(2022YQ003)。
文摘Advancing our understanding of global climate,particularly in polar regions,requires accurate detection of carbon dioxide(CO_(2))in ice cores and deep sea environments.However,detecting trace levels of CO_(2)in these areas presents significant challenges.We introduce a novel preconcentration approach using functionalized zeolitic imidazolate framework,ZIF-8(CN),for the detection of ultra-low CO_(2).ZIF-8(CN)has small pores(4.4■and cyano groups(–CN),enabling highly selective adsorption of CO_(2)(36.2 cm^(3)g^(−1))over N_(2)(1.6 cm^(3)g^(−1))at 298 K.The mechanism involves unique–CN···CO_(2)···–CN interactions within the pore structure.When cast into a film on an aluminum substrate,ZIF-8(CN)demonstrates exceptional CO_(2)preconcentration capability(1 ppm in N_(2))with an extraordinary preconcentration factor of 748,outperforming traditional ZIF and zeolite materials.Additionally,a ZIF-8(CN)preconcentrator is designed and fabricated with bionic gas flow of fractal structure which optimizes the gas-film contact,and thus its performance is further improved by 115%.