针对随机噪声背景下滚动轴承局部损伤信息提取困难的问题,提出了一种奇异值分解(Singular value decomposition,SVD)和局部均值分解(Local mean decomposition,LMD)联合降噪,并结合Teager能量算子(Teager energy operator,TEO)的特征提...针对随机噪声背景下滚动轴承局部损伤信息提取困难的问题,提出了一种奇异值分解(Singular value decomposition,SVD)和局部均值分解(Local mean decomposition,LMD)联合降噪,并结合Teager能量算子(Teager energy operator,TEO)的特征提取新方法。首先,利用SVD方法对滚动轴承故障振动信号进行处理,初步剔除背景噪声;然后,使用LMD方法分解降噪后的信号,依据相关系数指标筛分出敏感乘积函数(Product function,PF)并加以重构;最后,对重构的信号进行TEO解调分析,将解调谱中幅值突出的频率成分与故障特征频率理论值进行对比,提取故障信息。结果表明,该方法可有效提取轴承局部损伤的特征频率,最终实现故障诊断。展开更多
文摘针对随机噪声背景下滚动轴承局部损伤信息提取困难的问题,提出了一种奇异值分解(Singular value decomposition,SVD)和局部均值分解(Local mean decomposition,LMD)联合降噪,并结合Teager能量算子(Teager energy operator,TEO)的特征提取新方法。首先,利用SVD方法对滚动轴承故障振动信号进行处理,初步剔除背景噪声;然后,使用LMD方法分解降噪后的信号,依据相关系数指标筛分出敏感乘积函数(Product function,PF)并加以重构;最后,对重构的信号进行TEO解调分析,将解调谱中幅值突出的频率成分与故障特征频率理论值进行对比,提取故障信息。结果表明,该方法可有效提取轴承局部损伤的特征频率,最终实现故障诊断。