The experimental study was carried out to optimize the nozzle shape and dimension for the pulse cleaning of a ceramic filter candle. A bench scale unit of ceramic filter consisting of four commercial filter elements w...The experimental study was carried out to optimize the nozzle shape and dimension for the pulse cleaning of a ceramic filter candle. A bench scale unit of ceramic filter consisting of four commercial filter elements was used to measure the traces of the transient pressure around the nozzle and the overpressure in the filter cavity during the pulse-jet injection of pulse gas. Overpressure in the filter cavity is related to the pulse cleaning force. Nozzle design is concerned to increase the overpressure at the open end of filter element of pulse cleaning inlet, as well as to minimize the consumption of pulse gas. Convergent nozzle induces more secondary flow and generates higher pulse cleaning effect than straight nozzle. Nozzles of different convergent ratio (ratio of outlet to inlet diameter of nozzle) by changing the convergent angle and height were tested. The outlet diameter of convergent nozzle seriously influences the cleaning effect. The optimum convergent ratio increases with the increase of pulse gas pressure The nozzle position (distance of nozzle tip from the open end of filter inlet) is also important to decide the nozzle dimension. Nozzle of large outlet diameter accepts high pressure of pulse gas to provide large overpressure in the filter cavity of top position by applying long distance.展开更多
The Reynolds stress transport model and the Eulerian two-fluid model provided by the FLUENT code were applied to evaluate the gas-particle two-phase flow in the ceramic filter vessel. The ceramic filter vessel contain...The Reynolds stress transport model and the Eulerian two-fluid model provided by the FLUENT code were applied to evaluate the gas-particle two-phase flow in the ceramic filter vessel. The ceramic filter vessel contains six candle filters, which are arranged in the form of equilateral hexagon. The variation of the areal density of the filter cake during the filtration and the back-pulse process were analyzed. The coupling effect between filters, gas and solid, filtration and pulse cleaning process were investigated, respectively. The numerical results show a good approach to predict the particle distribution in the vessel and the particle deposition on the filter element. This study provides the base for the intensive study on the analysis of the gas-particle flow in the filter vessel.展开更多
基金Supported by the National Natural Science Foundation of China (50411140527) and Korea Science and Engineering Foundation.
文摘The experimental study was carried out to optimize the nozzle shape and dimension for the pulse cleaning of a ceramic filter candle. A bench scale unit of ceramic filter consisting of four commercial filter elements was used to measure the traces of the transient pressure around the nozzle and the overpressure in the filter cavity during the pulse-jet injection of pulse gas. Overpressure in the filter cavity is related to the pulse cleaning force. Nozzle design is concerned to increase the overpressure at the open end of filter element of pulse cleaning inlet, as well as to minimize the consumption of pulse gas. Convergent nozzle induces more secondary flow and generates higher pulse cleaning effect than straight nozzle. Nozzles of different convergent ratio (ratio of outlet to inlet diameter of nozzle) by changing the convergent angle and height were tested. The outlet diameter of convergent nozzle seriously influences the cleaning effect. The optimum convergent ratio increases with the increase of pulse gas pressure The nozzle position (distance of nozzle tip from the open end of filter inlet) is also important to decide the nozzle dimension. Nozzle of large outlet diameter accepts high pressure of pulse gas to provide large overpressure in the filter cavity of top position by applying long distance.
基金the National High Technology Research and Development Program of China(2007AA03Z524)
文摘The Reynolds stress transport model and the Eulerian two-fluid model provided by the FLUENT code were applied to evaluate the gas-particle two-phase flow in the ceramic filter vessel. The ceramic filter vessel contains six candle filters, which are arranged in the form of equilateral hexagon. The variation of the areal density of the filter cake during the filtration and the back-pulse process were analyzed. The coupling effect between filters, gas and solid, filtration and pulse cleaning process were investigated, respectively. The numerical results show a good approach to predict the particle distribution in the vessel and the particle deposition on the filter element. This study provides the base for the intensive study on the analysis of the gas-particle flow in the filter vessel.