期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于一维卷积神经网络的地层智能识别方法
1
作者 曹茂俊 崔欣锋 《计算机技术与发展》 2023年第9期133-140,148,共9页
地层识别是油气藏勘探的研究基础。传统地层识别由地质学家根据自身掌握的知识和经验手工完成,这种地质学家主导的人工解释是主观的、耗时的,可能引入人为偏差。深度学习在解决复杂非线性问题上具有优势,目前尚无有效解决地层识别的深... 地层识别是油气藏勘探的研究基础。传统地层识别由地质学家根据自身掌握的知识和经验手工完成,这种地质学家主导的人工解释是主观的、耗时的,可能引入人为偏差。深度学习在解决复杂非线性问题上具有优势,目前尚无有效解决地层识别的深度学习方法。针对测井-地层识别,提出了基于特征工程和一维卷积神经网络的地层智能识别方法。首先,利用INPEFA技术和中值滤波对原始曲线进行了多维重构,更好地提取了原始曲线的地层趋势及边缘特征,并对重构矩阵和原始曲线特征采用K-means聚类算法提取时空相关聚类特征;然后,以原始曲线特征、INPEFA曲线、中值滤波特征和聚类特征作为输入,基于一维卷积神经网络得到当前深度地层预测类型。与长短期记忆网络(LSTM)和传统的机器学习方法对比发现,在地层的识别上,地层智能识别方法具有更优异的性能和鲁棒性。该方法能有效识别地层,识别准确率达到92.82%,且在识别地层的同时也完成了地层划分。 展开更多
关键词 地层识别 一维卷积神经网络 测井曲线 深度学习 特征工程
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部