α-MoO3 nanobelts/carbon nanotubes(CNTs) composites were synthesized by simple hydrothermal method followed by CNTs incorporating, and characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM...α-MoO3 nanobelts/carbon nanotubes(CNTs) composites were synthesized by simple hydrothermal method followed by CNTs incorporating, and characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Cyclic voltammogram(CV), electrochemical impedance spectroscopy(EIS), and galvanostatic charge/discharge testing techniques were employed to evaluate the electrochemical behaviors of α-MoO3 nanobelts/CNTs composites. The results exhibited that compared to bare α-MoO3 nanobelts, the α-MoO3 nanobelts/CNTs composites have better electrochemical performances as cathode materials for lithium ion battery, maintaining a reversible specific capacity of 222.2 mAh/g at 0.3 C after 50 cycles, and 74.1% retention of the first reversible capacity. In addition, the Rct value of the α-MoO3 nanobelts/CNTs is 13 Ω, much lower than 66 Ω of the bare α-MoO3 nanobelts. The better electrochemical performances of the α-MoO3 nanobelts/CNTs composites can be attributed to the effects of the high conductive CNTs network.展开更多
基金Funded by the Fundamental Research Funds for the Central Universities(No.2014QNA08)
文摘α-MoO3 nanobelts/carbon nanotubes(CNTs) composites were synthesized by simple hydrothermal method followed by CNTs incorporating, and characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Cyclic voltammogram(CV), electrochemical impedance spectroscopy(EIS), and galvanostatic charge/discharge testing techniques were employed to evaluate the electrochemical behaviors of α-MoO3 nanobelts/CNTs composites. The results exhibited that compared to bare α-MoO3 nanobelts, the α-MoO3 nanobelts/CNTs composites have better electrochemical performances as cathode materials for lithium ion battery, maintaining a reversible specific capacity of 222.2 mAh/g at 0.3 C after 50 cycles, and 74.1% retention of the first reversible capacity. In addition, the Rct value of the α-MoO3 nanobelts/CNTs is 13 Ω, much lower than 66 Ω of the bare α-MoO3 nanobelts. The better electrochemical performances of the α-MoO3 nanobelts/CNTs composites can be attributed to the effects of the high conductive CNTs network.