Laser surface melting(LSM) is a high-energy surface treatment that allows modification of the microstructure and surface properties of Mg alloys. In the present work, an attempt of LSM on magnesium alloy with liquid...Laser surface melting(LSM) is a high-energy surface treatment that allows modification of the microstructure and surface properties of Mg alloys. In the present work, an attempt of LSM on magnesium alloy with liquid nitrogen-assisted cooling(LNSC) was carried out to get the higher cooling rate and improve the surface properties. The experimental results were compared with those of Ar gas protection at room temperature. The samples after LSM with LNSC resulted in a thinner melted layer, a highly homogeneous, refined melted microstructure and formed a lot of worm-like nanocrystals and local amorphous structures. Microhardness of the melted layer with LNAC was improved to HV 90-148 as compared to HV 65-105 of the samples with Ar gas protection. The corrosion resistance of the melted layer in a 3.5% Na Cl solution(mass fraction) was improved because of the grain refinement and redistribution of β-Mg17Al12 phases following rapid quenching associated with the process.展开更多
基金Project(51305292)supported by the National Natural Science Foundation of ChinaProject(2014-024)supported by Shanxi Scholarship Council of China
文摘Laser surface melting(LSM) is a high-energy surface treatment that allows modification of the microstructure and surface properties of Mg alloys. In the present work, an attempt of LSM on magnesium alloy with liquid nitrogen-assisted cooling(LNSC) was carried out to get the higher cooling rate and improve the surface properties. The experimental results were compared with those of Ar gas protection at room temperature. The samples after LSM with LNSC resulted in a thinner melted layer, a highly homogeneous, refined melted microstructure and formed a lot of worm-like nanocrystals and local amorphous structures. Microhardness of the melted layer with LNAC was improved to HV 90-148 as compared to HV 65-105 of the samples with Ar gas protection. The corrosion resistance of the melted layer in a 3.5% Na Cl solution(mass fraction) was improved because of the grain refinement and redistribution of β-Mg17Al12 phases following rapid quenching associated with the process.