期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于小波变换和分数阶微分的冬小麦叶绿素含量估算
被引量:
25
1
作者
李长春
施锦锦
+3 位作者
马春艳
崔颖琪
王艺琳
李亚聪
《农业机械学报》
EI
CAS
CSCD
北大核心
2021年第8期172-182,共11页
叶绿素含量变化直接表征冬小麦的光合作用能力,所以监测冬小麦叶绿素含量对分析冬小麦光合能力和生长状况具有重要意义。基于地面冬小麦冠层高光谱和实测叶绿素含量,分别利用原始光谱、分数阶微分光谱、原始光谱经连续小波变换后得到的...
叶绿素含量变化直接表征冬小麦的光合作用能力,所以监测冬小麦叶绿素含量对分析冬小麦光合能力和生长状况具有重要意义。基于地面冬小麦冠层高光谱和实测叶绿素含量,分别利用原始光谱、分数阶微分光谱、原始光谱经连续小波变换后得到的小波能量系数与实测叶绿素含量进行相关性分析,选取相关性较好的分数阶微分光谱和小波能量系数,采用逐步回归分析、支持向量机、人工神经网络等方法构建冬小麦叶绿素含量估算模型。结果表明,在拔节期、孕穗期、开花期和全生育期,使用连续小波变换人工神经网络建模结果最优,拔节期建模和验证决定系数分别为0.93和0.90,孕穗期建模和验证决定系数分别为0.93和0.90,开花期建模和验证决定系数分别为0.93和0.90,全生育期建模和验证决定系数分别为0.86和0.85;在灌浆期,使用分数阶微分人工神经网络建模结果最优,灌浆期建模和验证决定系数分别为0.97和0.90。本研究可为作物叶绿素含量遥感估算提供技术方案。
展开更多
关键词
冬小麦
叶绿素含量
冠层高光谱
连续小波变换
分数阶微分
人工神经网络
下载PDF
职称材料
题名
基于小波变换和分数阶微分的冬小麦叶绿素含量估算
被引量:
25
1
作者
李长春
施锦锦
马春艳
崔颖琪
王艺琳
李亚聪
机构
河南理工大学测绘与国土信息工程学院
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2021年第8期172-182,共11页
基金
国家自然科学基金项目(41871333)
国家大学生创新创业项目(202010460048)。
文摘
叶绿素含量变化直接表征冬小麦的光合作用能力,所以监测冬小麦叶绿素含量对分析冬小麦光合能力和生长状况具有重要意义。基于地面冬小麦冠层高光谱和实测叶绿素含量,分别利用原始光谱、分数阶微分光谱、原始光谱经连续小波变换后得到的小波能量系数与实测叶绿素含量进行相关性分析,选取相关性较好的分数阶微分光谱和小波能量系数,采用逐步回归分析、支持向量机、人工神经网络等方法构建冬小麦叶绿素含量估算模型。结果表明,在拔节期、孕穗期、开花期和全生育期,使用连续小波变换人工神经网络建模结果最优,拔节期建模和验证决定系数分别为0.93和0.90,孕穗期建模和验证决定系数分别为0.93和0.90,开花期建模和验证决定系数分别为0.93和0.90,全生育期建模和验证决定系数分别为0.86和0.85;在灌浆期,使用分数阶微分人工神经网络建模结果最优,灌浆期建模和验证决定系数分别为0.97和0.90。本研究可为作物叶绿素含量遥感估算提供技术方案。
关键词
冬小麦
叶绿素含量
冠层高光谱
连续小波变换
分数阶微分
人工神经网络
Keywords
winter wheat
chlorophyll content
canopy hyperspectral
continuous wavelet transform
fractional differential
artificial neural network
分类号
S512.11 [农业科学—作物学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于小波变换和分数阶微分的冬小麦叶绿素含量估算
李长春
施锦锦
马春艳
崔颖琪
王艺琳
李亚聪
《农业机械学报》
EI
CAS
CSCD
北大核心
2021
25
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部