期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于小波变换和分数阶微分的冬小麦叶绿素含量估算 被引量:25
1
作者 李长春 施锦锦 +3 位作者 马春艳 崔颖琪 王艺琳 李亚聪 《农业机械学报》 EI CAS CSCD 北大核心 2021年第8期172-182,共11页
叶绿素含量变化直接表征冬小麦的光合作用能力,所以监测冬小麦叶绿素含量对分析冬小麦光合能力和生长状况具有重要意义。基于地面冬小麦冠层高光谱和实测叶绿素含量,分别利用原始光谱、分数阶微分光谱、原始光谱经连续小波变换后得到的... 叶绿素含量变化直接表征冬小麦的光合作用能力,所以监测冬小麦叶绿素含量对分析冬小麦光合能力和生长状况具有重要意义。基于地面冬小麦冠层高光谱和实测叶绿素含量,分别利用原始光谱、分数阶微分光谱、原始光谱经连续小波变换后得到的小波能量系数与实测叶绿素含量进行相关性分析,选取相关性较好的分数阶微分光谱和小波能量系数,采用逐步回归分析、支持向量机、人工神经网络等方法构建冬小麦叶绿素含量估算模型。结果表明,在拔节期、孕穗期、开花期和全生育期,使用连续小波变换人工神经网络建模结果最优,拔节期建模和验证决定系数分别为0.93和0.90,孕穗期建模和验证决定系数分别为0.93和0.90,开花期建模和验证决定系数分别为0.93和0.90,全生育期建模和验证决定系数分别为0.86和0.85;在灌浆期,使用分数阶微分人工神经网络建模结果最优,灌浆期建模和验证决定系数分别为0.97和0.90。本研究可为作物叶绿素含量遥感估算提供技术方案。 展开更多
关键词 冬小麦 叶绿素含量 冠层高光谱 连续小波变换 分数阶微分 人工神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部