期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于无监督可能模糊学习矢量量化的近红外光谱生菜品种鉴别研究 被引量:4
1
作者 武小红 蔡培强 +2 位作者 武斌 孙俊 嵇港 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第3期711-715,共5页
为解决模糊学习矢量量化(FLVQ)对噪声数据敏感问题,在无监督可能模糊聚类(UPFC)基础上提出一种无监督可能模糊学习矢量量化(UPFLVQ)算法。UPFLVQ用UPFC的隶属度和典型值来更新学习矢量量化网络的学习速率,计算类中心矢量。UPFLVQ... 为解决模糊学习矢量量化(FLVQ)对噪声数据敏感问题,在无监督可能模糊聚类(UPFC)基础上提出一种无监督可能模糊学习矢量量化(UPFLVQ)算法。UPFLVQ用UPFC的隶属度和典型值来更新学习矢量量化网络的学习速率,计算类中心矢量。UPFLVQ属于无监督机器学习算法,适用于无学习样本情况下的样本分类。研究了UPFLVQ用于近红外光谱生菜品种鉴别的可行性。采用FieldSpec@3型便携式光谱分析仪获取波长范围为350~2 500nm的三种生菜样本的短波近红外光谱和长波近红外光谱,然后采用主成分分析(PCA)进行近红外光谱的维数压缩,取前三个主成分,累计可信度达97.50%,将2151维的近红外光谱压缩为三维数据。再运行模糊C-均值聚类(FCM)至迭代终止,并以FCM的类中心作为UPFLVQ的初始聚类中心,最后运行UPFLVQ得到隶属度和典型值以实现近红外光谱的生菜品种鉴别。同时,运行UPFC进行近红外光谱的生菜品种鉴别。实验结果表明:UPFLVQ和近红外光谱技术相结合的模型具有检测速度快,鉴别准确率高,对生菜不造成损坏等优点,可实现不同品种生菜的鉴别。UPFLVQ是将UPFC和FLVQ相结合的聚类算法,利用UPFLVQ建立近红外光谱的生菜品种鉴别模型时无需学习样本,适用于线性可分的数据聚类,为快速和无损地鉴别生菜品种提供了一种新的方法。 展开更多
关键词 近红外光谱 生菜 品种鉴别 无监督机器学习
下载PDF
基于正交线性判别分析和电子鼻技术的食醋分类 被引量:4
2
作者 武斌 王大智 +4 位作者 嵇港 黄大鹏 武小红 陈开兵 贾红雯 《食品与发酵工业》 CAS CSCD 北大核心 2020年第6期263-268,共6页
为了实现食醋品种的准确分类,探索应用电子鼻技术和两种特征提取方法进行食醋的检测和分类。先用自制电子鼻系统检测5个品种食醋的电子鼻信号,接着用标准正态变量变换进行数据预处理,然后分别用主成分分析(principal component analysis... 为了实现食醋品种的准确分类,探索应用电子鼻技术和两种特征提取方法进行食醋的检测和分类。先用自制电子鼻系统检测5个品种食醋的电子鼻信号,接着用标准正态变量变换进行数据预处理,然后分别用主成分分析(principal component analysis,PCA)+线性判别分析(linear discriminant analysis,LDA)和正交线性判别分析(orthogonal linear discriminant analysis,OLDA)对食醋电子鼻信号进行降维与特征提取,最后用最近邻分类器进行分类。实验表明,PCA+LDA的分类准确率最高达到90.32%,而OLDA的分类准确率最高达到91.52%。另外,PCA+LDA需要2次特征提取而OLDA只要1次。因此,OLDA在特征提取方面要优于PCA+LDA,基于OLDA和电子鼻技术的食醋品种分类方法是切实可行的。 展开更多
关键词 食醋 电子鼻 标准正态变量变换 正交线性判别分析 线性判别分析
下载PDF
广义模糊K调和均值聚类的近红外光谱生菜储藏时间鉴别 被引量:1
3
作者 武小红 潘明辉 +2 位作者 武斌 嵇港 孙俊 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第6期1721-1725,共5页
生菜的储藏时间是影响生菜新鲜程度的重要因素。为了快速、无损和有效地鉴别生菜的储藏时间,以欧式距离的p次方代替模糊K调和均值聚类(FKHM)中欧式距离的平方提出了一种广义模糊K调和均值聚类(GFKHM)算法并将该算法应用于鉴别生菜的储... 生菜的储藏时间是影响生菜新鲜程度的重要因素。为了快速、无损和有效地鉴别生菜的储藏时间,以欧式距离的p次方代替模糊K调和均值聚类(FKHM)中欧式距离的平方提出了一种广义模糊K调和均值聚类(GFKHM)算法并将该算法应用于鉴别生菜的储藏时间。以60个新鲜生菜样本为研究对象,采用AntarisⅡ近红外光谱分析仪每隔12h检测生菜的近红外漫反射光谱,共检测三次,光谱扫描的波数范围为10 000~4 000cm^(-1)。首先用主成分分析(PCA)对1 557维的生菜近红外光谱进行降维处理以减少冗余信息,取前20个主成分,经过PCA处理后得到20维的数据。然后用线性判别分析(LDA)提取光谱数据的鉴别信息以提高聚类的准确率,取鉴别向量数为2,则LDA将20维的数据转换为2维数据。最后以模糊C-均值聚类(FCM)的类中心作为FKHM和GFKHM的初始聚类中心,分别运行FKHM和GFKHM计算模糊隶属度以实现生菜储藏时间的鉴别。结果表明,GFKHM的鉴别准确率能达到92.5%,FKHM的鉴别准确率为90.0%,GFKHM具有比FKHM更高的鉴别准确率。GFKHM的聚类中心比FKHM更逼近真实类中心。GFKHM的收敛速度明显快于FKHM。采用近红外光谱技术同时结合GFKHM,PCA和LDA为快速和无损地鉴别生菜储藏时间提供了一种新的方法。 展开更多
关键词 近红外光谱 生菜 储藏时间 线性判别分析 模糊K调和均值聚类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部