目的利用深度图序列进行人体行为识别是机器视觉和人工智能中的一个重要研究领域,现有研究中存在深度图序列冗余信息过多以及生成的特征图中时序信息缺失等问题。针对深度图序列中冗余信息过多的问题,提出一种关键帧算法,该算法提高了...目的利用深度图序列进行人体行为识别是机器视觉和人工智能中的一个重要研究领域,现有研究中存在深度图序列冗余信息过多以及生成的特征图中时序信息缺失等问题。针对深度图序列中冗余信息过多的问题,提出一种关键帧算法,该算法提高了人体行为识别算法的运算效率;针对时序信息缺失的问题,提出了一种新的深度图序列特征表示方法,即深度时空能量图(depth spatial-temporal energy map,DSTEM),该算法突出了人体行为特征的时序性。方法关键帧算法根据差分图像序列的冗余系数剔除深度图序列的冗余帧,得到足以表述人体行为的关键帧序列。DSTEM算法根据人体外形及运动特点建立能量场,获得人体能量信息,再将能量信息投影到3个正交轴获得DSTEM。结果在MSR_Action3D数据集上的实验结果表明,关键帧算法减少冗余量,各算法在关键帧算法处理后运算效率提高了20%~30%。对DSTEM提取的方向梯度直方图(histogram of oriented gradient,HOG)特征,不仅在只有正序行为的数据库上识别准确率达到95.54%,而且在同时具有正序和反序行为的数据库上也能保持82.14%的识别准确率。结论关键帧算法减少了深度图序列中的冗余信息,提高了特征图提取速率;DSTEM不仅保留了经过能量场突出的人体行为的空间信息,而且完整地记录了人体行为的时序信息,在带有时序信息的行为数据上依然保持较高的识别准确率。展开更多
目的在人体行为识别研究中,利用多模态方法将深度数据与骨骼数据相融合,可有效提高动作的识别率。针对深度图像信息数据量大、冗余度高等问题,提出一种通过获取关键时程信息动作帧序列降低冗余的算法,即质心运动路径松弛算法,并根据不...目的在人体行为识别研究中,利用多模态方法将深度数据与骨骼数据相融合,可有效提高动作的识别率。针对深度图像信息数据量大、冗余度高等问题,提出一种通过获取关键时程信息动作帧序列降低冗余的算法,即质心运动路径松弛算法,并根据不同模态数据的特点,提出一种新的时空特征表示方法。方法质心运动路径松弛算法根据质心在相邻帧之间的运动距离,计算图像差分后获得的活跃部分的相似系数,然后剔除掉相似度高的帧,获得足以表达行为的关键时程信息。根据图像动态部分的变化特性、人体各部分在运动中的协同性和局部显著性特征构建一种新的时空特征表示方法。结果在MSR-Action3D数据集上对本文方法的效果进行验证。在3个子集中进行交叉验证的平均分类识别率为95.7432%,分别比Multi-fused,CovP3DJ,D3D-LSTM(densely connected 3DCNN and long short-term memory),Joint Subset Selection方法高2.4432%,4.7632%,0.3432%,0.2132%。本文方法在使用完整数据集的扩展实验中进行交叉验证的分类识别率为93.0403%,具有很好的鲁棒性。结论实验结果表明,本文提出的去冗余算法在降低冗余后提升了识别效果,提取的特征之间具有相关性低的特点,在组合识别中具有良好的互补性,有效提高了分类识别的精确度。展开更多
文摘目的利用深度图序列进行人体行为识别是机器视觉和人工智能中的一个重要研究领域,现有研究中存在深度图序列冗余信息过多以及生成的特征图中时序信息缺失等问题。针对深度图序列中冗余信息过多的问题,提出一种关键帧算法,该算法提高了人体行为识别算法的运算效率;针对时序信息缺失的问题,提出了一种新的深度图序列特征表示方法,即深度时空能量图(depth spatial-temporal energy map,DSTEM),该算法突出了人体行为特征的时序性。方法关键帧算法根据差分图像序列的冗余系数剔除深度图序列的冗余帧,得到足以表述人体行为的关键帧序列。DSTEM算法根据人体外形及运动特点建立能量场,获得人体能量信息,再将能量信息投影到3个正交轴获得DSTEM。结果在MSR_Action3D数据集上的实验结果表明,关键帧算法减少冗余量,各算法在关键帧算法处理后运算效率提高了20%~30%。对DSTEM提取的方向梯度直方图(histogram of oriented gradient,HOG)特征,不仅在只有正序行为的数据库上识别准确率达到95.54%,而且在同时具有正序和反序行为的数据库上也能保持82.14%的识别准确率。结论关键帧算法减少了深度图序列中的冗余信息,提高了特征图提取速率;DSTEM不仅保留了经过能量场突出的人体行为的空间信息,而且完整地记录了人体行为的时序信息,在带有时序信息的行为数据上依然保持较高的识别准确率。
文摘目的在人体行为识别研究中,利用多模态方法将深度数据与骨骼数据相融合,可有效提高动作的识别率。针对深度图像信息数据量大、冗余度高等问题,提出一种通过获取关键时程信息动作帧序列降低冗余的算法,即质心运动路径松弛算法,并根据不同模态数据的特点,提出一种新的时空特征表示方法。方法质心运动路径松弛算法根据质心在相邻帧之间的运动距离,计算图像差分后获得的活跃部分的相似系数,然后剔除掉相似度高的帧,获得足以表达行为的关键时程信息。根据图像动态部分的变化特性、人体各部分在运动中的协同性和局部显著性特征构建一种新的时空特征表示方法。结果在MSR-Action3D数据集上对本文方法的效果进行验证。在3个子集中进行交叉验证的平均分类识别率为95.7432%,分别比Multi-fused,CovP3DJ,D3D-LSTM(densely connected 3DCNN and long short-term memory),Joint Subset Selection方法高2.4432%,4.7632%,0.3432%,0.2132%。本文方法在使用完整数据集的扩展实验中进行交叉验证的分类识别率为93.0403%,具有很好的鲁棒性。结论实验结果表明,本文提出的去冗余算法在降低冗余后提升了识别效果,提取的特征之间具有相关性低的特点,在组合识别中具有良好的互补性,有效提高了分类识别的精确度。