期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于图像灰度熵的自适应字典学习算法 被引量:2
1
作者 杜秀丽 左思铭 邱少明 《计算机科学》 CSCD 北大核心 2019年第5期266-271,共6页
针对传统图像稀疏表示字典学习算法仅对图像训练学习单一字典,不能很好地对包含不同图像信息的图像块进行最优稀疏表示的问题,将图像灰度熵的思想引入到字典学习算法中,提出基于图像灰度熵的自适应字典学习算法。该算法将图像库作为训... 针对传统图像稀疏表示字典学习算法仅对图像训练学习单一字典,不能很好地对包含不同图像信息的图像块进行最优稀疏表示的问题,将图像灰度熵的思想引入到字典学习算法中,提出基于图像灰度熵的自适应字典学习算法。该算法将图像库作为训练样本,对图像库图像进行分块,计算各子块的灰度熵大小,依据灰度熵大小对子块进行分类,针对不同类别子块,设定不同K-奇异值分解算法参数,分别进行字典训练,从而得到多个不同的字典。根据灰度熵大小选择训练好的字典对待表示图像子块进行稀疏表示。仿真实验及结果表明,所提算法能够对图像进行较好的稀疏表示,图像的重构效果也得到了明显提升。 展开更多
关键词 稀疏表示 字典学习 K-奇异值分解 灰度熵
下载PDF
基于截断核范数低秩分解的自适应字典学习算法
2
作者 杜秀丽 司增辉 +1 位作者 左思铭 邱少明 《数据采集与处理》 CSCD 北大核心 2020年第4期603-612,共10页
针对过完备字典直接对图像进行稀疏表示不能很好地剔除高频噪声的影响,压缩感知后图像重构质量不高的问题,提出了基于截断核范数低秩分解的自适应字典学习算法。该算法首先利用截断核范数正则化低秩分解模型对图像矩阵低秩分解得到低秩... 针对过完备字典直接对图像进行稀疏表示不能很好地剔除高频噪声的影响,压缩感知后图像重构质量不高的问题,提出了基于截断核范数低秩分解的自适应字典学习算法。该算法首先利用截断核范数正则化低秩分解模型对图像矩阵低秩分解得到低秩部分和稀疏部分,其中低秩部分保留了图像的主要信息,稀疏部分主要包含高频噪声及部分物体轮廓信息;然后对图像低秩部分进行分块,依据图像块纹理复杂度对图像块进行分类;最后使用K奇异值分解(K⁃single value decomposition,K⁃SVD)字典学习算法,针对不同类别训练出多个不同大小的过完备字典。仿真结果表明,本文所提算法能够对图像进行较好的稀疏表示,并在很好地保持图像块特征一致性的同时显著提升图像重构质量。 展开更多
关键词 低秩稀疏分解 截断核范数 压缩感知 K⁃奇异值分解
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部