A new kind of multiple metal (Cu, Mg, Ce) doped Ni based mixed oxide catalyst, synthesized by the co-precipitation method, was used for efficient production of hydrogen from bio-oil reforming at 250-500℃. Two refor...A new kind of multiple metal (Cu, Mg, Ce) doped Ni based mixed oxide catalyst, synthesized by the co-precipitation method, was used for efficient production of hydrogen from bio-oil reforming at 250-500℃. Two reforming processes, the conventional steam reforming (CSR) and the electrochemical catalytic reforming (ECR), were performed for the bio-oil reforming. The catalyst with an atomic mol ratio of Ni:Cu:Mg:Ce:AI=5.6:1.1:1.9:1.0:9.9 exhibited very high reforming activity both in CSR and ECR processes, reaching 82.8% hydrogen yield at 500℃ in the CSR, yield of 91.1% at 400℃ and 3.1 A in the ECR, respectively. The influences of reforming temperature and the current through the catalyst in the ECR were investigated. It was observed that the reforming and decomposition of the bio-oil were significantly enhanced by the current. The promoting effects of current on the decomposition and reforming processes of bio-oil were further studied by using the model compounds of bio- oil (acetic acid and ethanol) under 101 kPa or low pressure (0.1 Pa) through the time of flight analysis. The catalyst also shows high water gas shift activity in the range of 300-600 ℃. The catalyst features and alterations in the bio-oil reforming were characterized by the ICP, XRD, XPS and BET measurements. The mechanism of bio-oil reforming was discussed based on the study of the elemental reactions and catalyst characterizations. The research catalyst, potentially, may be a practical catalyst for high efficient production of hydrogen from reforming of bio-oil at mild-temperature.展开更多
Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, ...Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, the production of light olefins decreased in the following order: HZSM-5〉SAPO-34〉MCM-41〉Y-zeolite. The highest olefins yield from bio-oil using HZSM- 5 catalyst reached 0.22 kg/kgbio-oil with carbon selectivity of 50.7% and a nearly complete bio-oil conversion. The reaction conditions and catalyst characterization were investigated in detail to reveal the relationship between the catalyst structure and the production of olefins. The comparison between the pyrolysis and catalytic pyrolysis of bio-oil was also performed.展开更多
文摘A new kind of multiple metal (Cu, Mg, Ce) doped Ni based mixed oxide catalyst, synthesized by the co-precipitation method, was used for efficient production of hydrogen from bio-oil reforming at 250-500℃. Two reforming processes, the conventional steam reforming (CSR) and the electrochemical catalytic reforming (ECR), were performed for the bio-oil reforming. The catalyst with an atomic mol ratio of Ni:Cu:Mg:Ce:AI=5.6:1.1:1.9:1.0:9.9 exhibited very high reforming activity both in CSR and ECR processes, reaching 82.8% hydrogen yield at 500℃ in the CSR, yield of 91.1% at 400℃ and 3.1 A in the ECR, respectively. The influences of reforming temperature and the current through the catalyst in the ECR were investigated. It was observed that the reforming and decomposition of the bio-oil were significantly enhanced by the current. The promoting effects of current on the decomposition and reforming processes of bio-oil were further studied by using the model compounds of bio- oil (acetic acid and ethanol) under 101 kPa or low pressure (0.1 Pa) through the time of flight analysis. The catalyst also shows high water gas shift activity in the range of 300-600 ℃. The catalyst features and alterations in the bio-oil reforming were characterized by the ICP, XRD, XPS and BET measurements. The mechanism of bio-oil reforming was discussed based on the study of the elemental reactions and catalyst characterizations. The research catalyst, potentially, may be a practical catalyst for high efficient production of hydrogen from reforming of bio-oil at mild-temperature.
基金V. ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China (No.51161140331) and the National High Technology Research and Development of Ministry of Science and Technology of China (No.2009AA05Z435).
文摘Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, the production of light olefins decreased in the following order: HZSM-5〉SAPO-34〉MCM-41〉Y-zeolite. The highest olefins yield from bio-oil using HZSM- 5 catalyst reached 0.22 kg/kgbio-oil with carbon selectivity of 50.7% and a nearly complete bio-oil conversion. The reaction conditions and catalyst characterization were investigated in detail to reveal the relationship between the catalyst structure and the production of olefins. The comparison between the pyrolysis and catalytic pyrolysis of bio-oil was also performed.
基金supported by the National Natural Science Foundation of China(22105186)the National Natural Science Joint Safety Foundation(U2030202)the support of National Natural Science Foundation of China(21875232)for the thermal and kinetic analysis。