提出了利用坐标旋转数字计算(coordinate rotation digital computer,CORDIC)算法进行角度解码的方法。利用流水线的思想实现了高速CORDIC算法,并利用仿真数据说明了用软件的方法可以降低在过零点采样引入的误差。编制了用于联合仿真的...提出了利用坐标旋转数字计算(coordinate rotation digital computer,CORDIC)算法进行角度解码的方法。利用流水线的思想实现了高速CORDIC算法,并利用仿真数据说明了用软件的方法可以降低在过零点采样引入的误差。编制了用于联合仿真的图形操作界面,便于仿真操作。综合的结果表明CORDIC算法的实现只消耗很少的逻辑资源,在一般的FPGA(现场可编程门阵列)器件中就能实现。仿真结果表明算法的最大角度解码误差为0.013 5°,具有较高的精度。展开更多
Electronic regulation of two-dimensional(2 D)transition metal dichalcogenides(TMDCs)is a crucial step towards next-generation optoelectronics and electronics.Here,we demonstrate controllable and selective-area defect ...Electronic regulation of two-dimensional(2 D)transition metal dichalcogenides(TMDCs)is a crucial step towards next-generation optoelectronics and electronics.Here,we demonstrate controllable and selective-area defect engineering in 2D molybdenum disulfide(MoS_(2))using a focused ion beam with a low-energy gallium ion(Ga^(+))source.We find that the surface defects of MoS_(2)can be tuned by the precise control of ion energy and dose.Furthermore,the fieldeffect transistors based on the monolayer MoS_(2)show a significant threshold voltage modulation over 70 V after Ga+irradiation.First-principles calculations reveal that the Ga impurities in the monolayer MoS_(2)introduce a defect state near the Fermi level,leading to a shallow acceptor level of 0.25 eV above the valence band maximum.This defect engineering strategy enables direct writing of complex pattern at the atomic length scale in a controlled and facile manner,tailoring the electronic properties of 2D TMDCs for novel devices.展开更多
文摘提出了利用坐标旋转数字计算(coordinate rotation digital computer,CORDIC)算法进行角度解码的方法。利用流水线的思想实现了高速CORDIC算法,并利用仿真数据说明了用软件的方法可以降低在过零点采样引入的误差。编制了用于联合仿真的图形操作界面,便于仿真操作。综合的结果表明CORDIC算法的实现只消耗很少的逻辑资源,在一般的FPGA(现场可编程门阵列)器件中就能实现。仿真结果表明算法的最大角度解码误差为0.013 5°,具有较高的精度。
基金supported by Fujian Minjiang Distinguished Scholar Programthe Department of Science and Technology of Fujian Province(2020J01704 and 2019L3008)the Scientific Research Foundation from Jimei University(ZP2020066 and ZP2020065)。
文摘Electronic regulation of two-dimensional(2 D)transition metal dichalcogenides(TMDCs)is a crucial step towards next-generation optoelectronics and electronics.Here,we demonstrate controllable and selective-area defect engineering in 2D molybdenum disulfide(MoS_(2))using a focused ion beam with a low-energy gallium ion(Ga^(+))source.We find that the surface defects of MoS_(2)can be tuned by the precise control of ion energy and dose.Furthermore,the fieldeffect transistors based on the monolayer MoS_(2)show a significant threshold voltage modulation over 70 V after Ga+irradiation.First-principles calculations reveal that the Ga impurities in the monolayer MoS_(2)introduce a defect state near the Fermi level,leading to a shallow acceptor level of 0.25 eV above the valence band maximum.This defect engineering strategy enables direct writing of complex pattern at the atomic length scale in a controlled and facile manner,tailoring the electronic properties of 2D TMDCs for novel devices.