以饲料玉米为研究对象,采用化学计量学方法,利用全波段光谱数据建立玉米粗蛋白预测的简单快速精准预测模型。结果表明:原始光谱经去趋势算法预处理后,Rank-KS算法选择校正集和预测集,使用偏最小二乘(Partial least square,PLS)方法进行...以饲料玉米为研究对象,采用化学计量学方法,利用全波段光谱数据建立玉米粗蛋白预测的简单快速精准预测模型。结果表明:原始光谱经去趋势算法预处理后,Rank-KS算法选择校正集和预测集,使用偏最小二乘(Partial least square,PLS)方法进行建模,校正集和预测集的相关系数分别为0.9915和0.9813,校正集和预测集的均方根误差分别为0.0634和0.1138。预测集的相对分析误差RPD为5.02,大于评估阈值3.0。所建模型精度和稳定性较为理想,可满足在线生成检测的要求。展开更多
文摘以饲料玉米为研究对象,采用化学计量学方法,利用全波段光谱数据建立玉米粗蛋白预测的简单快速精准预测模型。结果表明:原始光谱经去趋势算法预处理后,Rank-KS算法选择校正集和预测集,使用偏最小二乘(Partial least square,PLS)方法进行建模,校正集和预测集的相关系数分别为0.9915和0.9813,校正集和预测集的均方根误差分别为0.0634和0.1138。预测集的相对分析误差RPD为5.02,大于评估阈值3.0。所建模型精度和稳定性较为理想,可满足在线生成检测的要求。