期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于时空优化LSTM深度学习网络的气温预测 被引量:2
1
作者 杨耘 王彬泽 +4 位作者 刘艳 席江波 柏涵 王丽霞 吴田军 《徐州工程学院学报(自然科学版)》 CAS 2020年第2期44-49,共6页
新疆天山山脉中段玛纳斯河流域及其周边地区气象观测站点稀疏且分布不均匀,导致对该地区积雪-融雪过程模拟所需的气温要素时空预测精度不高.针对这一问题,提出了基于时空优化长短时记忆(LSTM)深度网络的气温时空精准预测模型.首先,以该... 新疆天山山脉中段玛纳斯河流域及其周边地区气象观测站点稀疏且分布不均匀,导致对该地区积雪-融雪过程模拟所需的气温要素时空预测精度不高.针对这一问题,提出了基于时空优化长短时记忆(LSTM)深度网络的气温时空精准预测模型.首先,以该地区21个气象观测站点上2015年全年小时气象数据为数据源,利用Pearson相关性分析及多重共线性检验法选取了经度、纬度、风速、地表温度、相对湿度相关性较强的5个特征.其次,引入LSTM深度学习模型对气温等四个气象要素时间序列进行建模及预测,再引入后向传播(BP)神经网络对气象要素值进行优化并实现了将来逐小时气温的精准预测.最后,通过克里金插值(Kriging)制作了未来小时研究区气温空间分布图.对LSTM-BP模型预测精度进行分析,结果表明在研究区观测站点稀疏且分布不均匀情况下,利用提出的BP-LSTM模型预测的小时气温的均方根误差(RMSE)为2.37℃,比单独的LSTM模型降低2.21℃,比LSTM与多元线性回归组合模型降低0.3℃.LSTM-BP组合网络预测的绝对平均误差(MAE)也有所降低.对预测后的气温空间分布情况分析结果进一步验证了该模型的时空预测结果与实际情况一致. 展开更多
关键词 长短时记忆(LSTM) 深度学习 气温 时空预测 玛纳斯河流域
下载PDF
基于权重动态变形和双重网络自我验证的遥感影像分类方法
2
作者 张庆芳 丛铭 +8 位作者 韩玲 席江波 荆青青 崔建军 杨成生 任超峰 顾俊凯 许妙忠 陶翊婷 《激光与光电子学进展》 CSCD 北大核心 2024年第8期275-285,共11页
目前主流的神经网络在面对复杂多样的地物目标时难以精确区分,同时样本数量少、弱监督条件也容易为神经网络带来大量噪声与错误。为此,在分析遥感影像的地物特点后,提出一种基于权重动态变形的双重网络遥感影像分类方法,通过构架灵活、... 目前主流的神经网络在面对复杂多样的地物目标时难以精确区分,同时样本数量少、弱监督条件也容易为神经网络带来大量噪声与错误。为此,在分析遥感影像的地物特点后,提出一种基于权重动态变形的双重网络遥感影像分类方法,通过构架灵活、简易却有效的权重动态变形结构,构建经过改进的分类网络与目标识别网络,形成双网络对照的自我验证,从而提高学习性能、修复误差、增补遗漏、提高分类精度。实验结果表明,所提方法在容易实施的基础上,表现出更强的地物认知能力和更强的噪声抵抗能力,即其能够适应各种遥感影像的分类任务,具有较为广阔的应用潜力。 展开更多
关键词 遥感影像分类 神经网络 权重动态变形 双重神经网络 自我验证
原文传递
模拟困难样本的Mask R-CNN滑坡分割识别 被引量:5
3
作者 姜万冬 席江波 +3 位作者 李振洪 丁明涛 杨立功 谢大帅 《武汉大学学报(信息科学版)》 EI CAS CSCD 北大核心 2023年第12期1931-1942,共12页
随着人工智能的发展,利用高分影像进行滑坡等地质灾害识别逐渐成为研究热点。滑坡目视解译需依赖专家经验,传统滑坡自动识别方法又易将滑坡和裸地、道路等地物混淆。针对以上问题,提出了基于模拟困难样本的掩模区域卷积神经网络(mask re... 随着人工智能的发展,利用高分影像进行滑坡等地质灾害识别逐渐成为研究热点。滑坡目视解译需依赖专家经验,传统滑坡自动识别方法又易将滑坡和裸地、道路等地物混淆。针对以上问题,提出了基于模拟困难样本的掩模区域卷积神经网络(mask region-based convolutional neural network,Mask R-CNN)滑坡提取方法。在现有样本的基础上,利用滑坡的形状、颜色、纹理等特征模拟更为复杂的滑坡背景进行困难样本挖掘增强,并将得到的困难样本输入Mask R-CNN网络进行滑坡精细检测分割。在实际研究区域中,由于滑坡数量有限,因此在频率域进行小样本学习,在减少数据需求的同时,保证分割识别的准确度。中国贵州省毕节市的实验结果表明,基于模拟困难样本的Mask R-CNN方法检测精度为94.0%,像素分割平均准确率为90.3%,可实现低虚警率下的高性能检测分割;采用频率域学习,在一半数据输入量的情况下,模型检测精度仍可得到提升。利用中国甘肃省天水地区的滑坡区域进行实际验证,进一步证明了所提方法的有效性。 展开更多
关键词 深度学习 滑坡提取 Mask R-CNN 困难样本 频率域
原文传递
智能优化学习的高空间分辨率遥感影像语义分割 被引量:12
4
作者 邵振峰 孙悦鸣 +1 位作者 席江波 李岩 《武汉大学学报(信息科学版)》 EI CAS CSCD 北大核心 2022年第2期234-241,共8页
高空间分辨率遥感影像正被广泛应用,而传统分类算法在高分遥感影像上的精度和效率较差,深度学习语义分割算法在实际分类中泛化性较差。为了适应大范围高分遥感影像的特点,提出了一种基于U-Net网络的模拟退火超参数优化与深度可分离卷积... 高空间分辨率遥感影像正被广泛应用,而传统分类算法在高分遥感影像上的精度和效率较差,深度学习语义分割算法在实际分类中泛化性较差。为了适应大范围高分遥感影像的特点,提出了一种基于U-Net网络的模拟退火超参数优化与深度可分离卷积语义分割模型。首先在U-Net网络基础上使用了深度可分离卷积模块来进行特征提取,在保持高效性的同时减少模型的参数量和计算量,然后利用基于模拟退火的智能优化学习模型搜索网络超参数的全局最优解,自动优化网络训练初始点,最后在ISPRS2D和GID(Gaofen image dataset)数据集上进行实验。对比实验结果表明,在ISPRS2D数据集的分类结果中,建筑物、低植被和汽车及总体分类精度均有提高,在GID数据集的分类结果中,水域、草地、森林及总体分类精度均有大幅提高。实验结果验证了所提模型的高效性、高精度性与鲁棒性。 展开更多
关键词 语义分割 高分辨率遥感影像 深度学习 超参数优化
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部