期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
局部特征与点云配准引导下的神经元相似性度量方法
1
作者
甄昊天
常令琛
+3 位作者
祝继华
朱恩涛
樊夏玥
李钟毓
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2024年第9期1480-1490,共11页
针对现有神经元形态学匹配与相似性度量方法难以有效处理大规模且结构复杂神经元数据的问题,提出一种由局部特征与点云配准引导下的神经元相似性度量方法.首先,利用全局特征进行大规模检索完成神经元相似数据的初筛;其次,基于深度卷积...
针对现有神经元形态学匹配与相似性度量方法难以有效处理大规模且结构复杂神经元数据的问题,提出一种由局部特征与点云配准引导下的神经元相似性度量方法.首先,利用全局特征进行大规模检索完成神经元相似数据的初筛;其次,基于深度卷积自编码器,对筛选后的神经元数据进行无监督的局部特征提取,实现两两神经元之间的粗配准,并借助迭代最近点算法,将具有空间树型结构的神经元匹配问题转换为点云的三维配准问题;最后,通过与全局特征下的检索结果进行融合,实现神经元形态数据的相似性度量.在NeuroMorpho公开数据集上抽取了19286个神经元,并与其他6种相似性度量方法进行对比实验,文中方法的Top-1和Top-50精度分别为0.981和0.721,均优于现有对比方法,验证了其在大规模数据集上的有效性与精确性.
展开更多
关键词
神经元形态学
深度神经网络
相似性度量
点云配准
下载PDF
职称材料
基于三维深度神经网络的大规模神经元形态表征与检索方法
被引量:
2
2
作者
常令琛
李钟毓
+2 位作者
樊夏玥
商增谊
景海婷
《中国科学:信息科学》
CSCD
北大核心
2021年第12期2089-2101,共13页
高效准确的相似神经元检索方法是神经元形态分析的重要支撑.随着高精度显微成像、神经元示踪、人工智能等技术的发展,近些年出现了若干基于机器学习的神经元形态计算与分析方法,这些研究主要包括对传统神经元形态度量指标的统计分析,以...
高效准确的相似神经元检索方法是神经元形态分析的重要支撑.随着高精度显微成像、神经元示踪、人工智能等技术的发展,近些年出现了若干基于机器学习的神经元形态计算与分析方法,这些研究主要包括对传统神经元形态度量指标的统计分析,以及将神经元形态二维投影与深度学习结合的神经元量化表征方法,在神经元的特征提取、分类、相似检索等任务中均取得了不错的效果.不过随着越来越多的三维神经元数据被重建出来,以上方法都无法满足当前背景下对大规模神经元形态数据的细粒度表征、检索与分类需求.为此,本文提出了基于三维深度神经网络的大规模神经元形态表征与检索方法.首先,为了将神经元的三维空间拓扑结构转换成适用于深度神经网络的形式,我们设计了神经元空间形态的体素转换方法,将原始的神经元重构文件转换成三维体素的形式,极大地保留了神经元的三维空间拓扑结构.随后,考虑到当前神经元数据缺乏精细的分类标准,本文设计了基于三维卷积自动编码器的神经元形态表征算法,应用深度神经网络无监督地学习神经元体素数据的结构特点,得到神经元形态的量化表征,并以此设计端到端的相似神经元快速检索算法.最后通过实验验证本文所提出的方法,在9万余神经元数据中检索形态相似的神经元,实验结果显著优于其他基于神经元量化表征的检索方法.实验表明,本文方法可以更高效准确地检索相似神经元,为神经元的形态学分析、神经元单细胞分类等相关研究的关键问题提供支持.
展开更多
关键词
神经元形态学
深度神经网络
三维体素
特征表达
原文传递
题名
局部特征与点云配准引导下的神经元相似性度量方法
1
作者
甄昊天
常令琛
祝继华
朱恩涛
樊夏玥
李钟毓
机构
西安交通大学软件学院
西安交通大学第一附属医院免疫代谢性疾病研究所
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2024年第9期1480-1490,共11页
基金
国家自然科学基金(61902310)。
文摘
针对现有神经元形态学匹配与相似性度量方法难以有效处理大规模且结构复杂神经元数据的问题,提出一种由局部特征与点云配准引导下的神经元相似性度量方法.首先,利用全局特征进行大规模检索完成神经元相似数据的初筛;其次,基于深度卷积自编码器,对筛选后的神经元数据进行无监督的局部特征提取,实现两两神经元之间的粗配准,并借助迭代最近点算法,将具有空间树型结构的神经元匹配问题转换为点云的三维配准问题;最后,通过与全局特征下的检索结果进行融合,实现神经元形态数据的相似性度量.在NeuroMorpho公开数据集上抽取了19286个神经元,并与其他6种相似性度量方法进行对比实验,文中方法的Top-1和Top-50精度分别为0.981和0.721,均优于现有对比方法,验证了其在大规模数据集上的有效性与精确性.
关键词
神经元形态学
深度神经网络
相似性度量
点云配准
Keywords
neuronal morphology
deep neural network
similarity measurement
point cloud registration
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
基于三维深度神经网络的大规模神经元形态表征与检索方法
被引量:
2
2
作者
常令琛
李钟毓
樊夏玥
商增谊
景海婷
机构
西安交通大学软件学院
西安交通大学第一附属医院Med-X研究院
出处
《中国科学:信息科学》
CSCD
北大核心
2021年第12期2089-2101,共13页
基金
国家自然科学基金(批准号:61902310)资助项目。
文摘
高效准确的相似神经元检索方法是神经元形态分析的重要支撑.随着高精度显微成像、神经元示踪、人工智能等技术的发展,近些年出现了若干基于机器学习的神经元形态计算与分析方法,这些研究主要包括对传统神经元形态度量指标的统计分析,以及将神经元形态二维投影与深度学习结合的神经元量化表征方法,在神经元的特征提取、分类、相似检索等任务中均取得了不错的效果.不过随着越来越多的三维神经元数据被重建出来,以上方法都无法满足当前背景下对大规模神经元形态数据的细粒度表征、检索与分类需求.为此,本文提出了基于三维深度神经网络的大规模神经元形态表征与检索方法.首先,为了将神经元的三维空间拓扑结构转换成适用于深度神经网络的形式,我们设计了神经元空间形态的体素转换方法,将原始的神经元重构文件转换成三维体素的形式,极大地保留了神经元的三维空间拓扑结构.随后,考虑到当前神经元数据缺乏精细的分类标准,本文设计了基于三维卷积自动编码器的神经元形态表征算法,应用深度神经网络无监督地学习神经元体素数据的结构特点,得到神经元形态的量化表征,并以此设计端到端的相似神经元快速检索算法.最后通过实验验证本文所提出的方法,在9万余神经元数据中检索形态相似的神经元,实验结果显著优于其他基于神经元量化表征的检索方法.实验表明,本文方法可以更高效准确地检索相似神经元,为神经元的形态学分析、神经元单细胞分类等相关研究的关键问题提供支持.
关键词
神经元形态学
深度神经网络
三维体素
特征表达
Keywords
neuron morphology
deep neural networks
3D voxels
feature representation
分类号
TP391.3 [自动化与计算机技术—计算机应用技术]
TP183 [自动化与计算机技术—控制理论与控制工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
局部特征与点云配准引导下的神经元相似性度量方法
甄昊天
常令琛
祝继华
朱恩涛
樊夏玥
李钟毓
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2024
0
下载PDF
职称材料
2
基于三维深度神经网络的大规模神经元形态表征与检索方法
常令琛
李钟毓
樊夏玥
商增谊
景海婷
《中国科学:信息科学》
CSCD
北大核心
2021
2
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部