基于低温共烧陶瓷(LTCC)技术,设计了一款1:4的阻抗转换层叠式宽带巴伦.本文采用差动互绕结构的耦合微带线,在有限元分析软件HFSS中设计巴伦和提取参数,然后在先进设计系统软件ADS中进行仿真.最终设计出频带在DC—4.5 GHz内,耦合系数为0....基于低温共烧陶瓷(LTCC)技术,设计了一款1:4的阻抗转换层叠式宽带巴伦.本文采用差动互绕结构的耦合微带线,在有限元分析软件HFSS中设计巴伦和提取参数,然后在先进设计系统软件ADS中进行仿真.最终设计出频带在DC—4.5 GHz内,耦合系数为0.83.回波损耗在-20 d B以下,插入损耗在-3 d B以上.相位不平衡度小于±3°,幅度不平衡度小于±0.35 d B.展开更多
基于低温共烧陶瓷工艺(LTCC),设计了工作在370 GHz的三阶带通滤波器.采用有限元分析软件HFSS提取了LTCC工艺下矩形波导的复传播常数,并精确计算了LTCC工艺下矩形谐振腔的品质因数和耦合系数,用于辅助带通滤波器的设计.随后设计了能够用...基于低温共烧陶瓷工艺(LTCC),设计了工作在370 GHz的三阶带通滤波器.采用有限元分析软件HFSS提取了LTCC工艺下矩形波导的复传播常数,并精确计算了LTCC工艺下矩形谐振腔的品质因数和耦合系数,用于辅助带通滤波器的设计.随后设计了能够用于进一步探针测量的微带线到矩形波导转换器.最终得到的三阶带通滤波器中心频率370 GHz,相对带宽4.7%,插入损耗0.7 d B,回波损耗22 d B,带外抑制大于28 d B.展开更多
A 130 nm CMOS complementary-conducting-strip transmission line(CCS-TL)based multi-stage amplifier beyond 100 GHz was presented in this paper. Different structural parameters were investigated to achieve higher quality...A 130 nm CMOS complementary-conducting-strip transmission line(CCS-TL)based multi-stage amplifier beyond 100 GHz was presented in this paper. Different structural parameters were investigated to achieve higher quality factor for the matching circuits. Moreover, CCS-TL based Marchand balun was implemented to achieve higher output power. The measured small signal gain was higher than 5 d B from 101 GHz to 110 GHz. DC power consumption was 67.2 mW with V_D=1.2 V, and the chip size including contact PADs was 1.12 mm×0.81 mm.展开更多
文摘基于低温共烧陶瓷(LTCC)技术,设计了一款1:4的阻抗转换层叠式宽带巴伦.本文采用差动互绕结构的耦合微带线,在有限元分析软件HFSS中设计巴伦和提取参数,然后在先进设计系统软件ADS中进行仿真.最终设计出频带在DC—4.5 GHz内,耦合系数为0.83.回波损耗在-20 d B以下,插入损耗在-3 d B以上.相位不平衡度小于±3°,幅度不平衡度小于±0.35 d B.
文摘基于低温共烧陶瓷工艺(LTCC),设计了工作在370 GHz的三阶带通滤波器.采用有限元分析软件HFSS提取了LTCC工艺下矩形波导的复传播常数,并精确计算了LTCC工艺下矩形谐振腔的品质因数和耦合系数,用于辅助带通滤波器的设计.随后设计了能够用于进一步探针测量的微带线到矩形波导转换器.最终得到的三阶带通滤波器中心频率370 GHz,相对带宽4.7%,插入损耗0.7 d B,回波损耗22 d B,带外抑制大于28 d B.
基金Supported by the National High Technology Research and Development Program of China(“863”ProgramNo.2015AA01A703)
文摘A 130 nm CMOS complementary-conducting-strip transmission line(CCS-TL)based multi-stage amplifier beyond 100 GHz was presented in this paper. Different structural parameters were investigated to achieve higher quality factor for the matching circuits. Moreover, CCS-TL based Marchand balun was implemented to achieve higher output power. The measured small signal gain was higher than 5 d B from 101 GHz to 110 GHz. DC power consumption was 67.2 mW with V_D=1.2 V, and the chip size including contact PADs was 1.12 mm×0.81 mm.