期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于高光谱图像和光谱信息融合的马铃薯多指标检测方法 被引量:25
1
作者 金瑞 李小昱 +4 位作者 颜伊芸 徐梦玲 库静 徐森淼 胡雪雪 《农业工程学报》 EI CAS CSCD 北大核心 2015年第16期258-263,共6页
针对随机放置的马铃薯缺陷多项指标难以同时检测的问题,提出了一种基于高光谱信息融合的流形学习降维算法与极限学习机(extreme learning machine,ELM)相结合的方法,该方法可同时识别马铃薯的多项缺陷指标。分别采集发芽、绿皮、黑心... 针对随机放置的马铃薯缺陷多项指标难以同时检测的问题,提出了一种基于高光谱信息融合的流形学习降维算法与极限学习机(extreme learning machine,ELM)相结合的方法,该方法可同时识别马铃薯的多项缺陷指标。分别采集发芽、绿皮、黑心和合格马铃薯的反射高光谱数据(390~1 040 nm),在光谱维,提取马铃薯样本感兴趣区域(region of interest,ROI)的平均光谱,分别采用扩散映射(diffusion maps,DM)、局部线性嵌入(locally linear embedding,LLE)和海森局部线性嵌入(hessian locally linear embedding,HLLE)3种流形学习降维算法对光谱数据进行降维;在图像维,对马铃薯伪彩色图像进行形态学处理,获取基于灰度共生矩阵(gray level co-occurrence matrix,GLCM)的图像纹理信息,采用连续投影算法(successive projections algorithm,SPA)优选图像纹理特征;融合光谱维信息和图像维信息,分别建立基于极限学习机(ELM)与支持向量机(support vector machine,SVM)的马铃薯多分类识别模型。结果表明,扩散映射结合极限学习机(DM-ELM)模型的预测结果较优,该模型对发芽、绿皮、黑心和合格马铃薯样本的单一识别率分别为97.30%、93.55%、94.44%和100%,混合识别率达到96.58%,时间为0.11 s,可知高光谱信息融合技术结合流形学习降维算法可同时识别随机放置马铃薯的多种缺陷指标。 展开更多
关键词 信息融合 无损检测 算法 高光谱成像 流形学习 极限学习机 图像纹理特征 马铃薯
下载PDF
半透射高光谱成像技术与支持向量机的马铃薯空心病无损检测研究 被引量:16
2
作者 黄涛 李小昱 +4 位作者 徐梦玲 金瑞 库静 徐森淼 武振中 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第1期198-202,共5页
针对马铃薯空心病的难以检测问题,提出了一种基于半透射高光谱成像技术结合支持向量机(support vector machine,SVM)的马铃薯空心病无损检测方法。选取224个马铃薯样本(合格149个,空心75个)作为研究对象,搭建了马铃薯半透射高光谱... 针对马铃薯空心病的难以检测问题,提出了一种基于半透射高光谱成像技术结合支持向量机(support vector machine,SVM)的马铃薯空心病无损检测方法。选取224个马铃薯样本(合格149个,空心75个)作为研究对象,搭建了马铃薯半透射高光谱图像采集系统,采集了马铃薯样本半透射高光谱图像(390~1 040nm),对感兴趣区域内的光谱进行平均和光谱特征分析。采用变量标准化(normalize)对原始光谱进行光谱预处理,建立了全波段的SVM判别模型,模型对测试集样本的识别准确率仅为87.5%。为了提高模型性能,采用竞争性自适应重加权算法(competitive adaptive reweighed sampling algorithm,CARS)结合连续投影算法(successive projection algorithm,SPA)对光谱全波段520个变量进行变量选择,最终确定了8个光谱特征变量(454,601,639,664,748,827,874和936nm),所选8个光谱变量建立的SVM模型对马铃薯测试集的识别率为94.64%。分别采用人工鱼群算法(artificial fish swarm algorithm,AFSA)、遗传算法(genetic algorithm,GA)和网格搜索法(grid search algorithm)对SVM模型的惩罚参数c和核参数g进行优化。经过建模比较分析,确定AFSA为最优优化算法,最优模型参数为c=10.659 1,g=0.349 7,确定AFSASVM模型为马铃薯空心病的最优识别模型,该模型总体识别率达到100%。试验结果表明:基于半透射高光谱成像技术结合CARS-SPA与AFSA-SVM方法能够对马铃薯空心病进行准确的检测,也为马铃薯空心病的快速无损检测提供技术支持。 展开更多
关键词 高光谱成像 支持向量机 人工鱼群算法 空心病 马铃薯
下载PDF
不同品种间的猪肉含水率高光谱模型传递方法研究 被引量:9
3
作者 刘娇 李小昱 +3 位作者 郭小许 金瑞 徐森淼 库静 《农业工程学报》 EI CAS CSCD 北大核心 2014年第17期276-284,共9页
针对目前的模型传递方法研究大多为不同仪器间的近红外光谱模型传递,该文采用高光谱技术建立猪肉含水率定量检测模型,并针对不同品种间的模型传递提出了一种分段直接校正结合线性插值(piecewise direct standardization combine with li... 针对目前的模型传递方法研究大多为不同仪器间的近红外光谱模型传递,该文采用高光谱技术建立猪肉含水率定量检测模型,并针对不同品种间的模型传递提出了一种分段直接校正结合线性插值(piecewise direct standardization combine with linear interpolation,PDS-LI)的传递算法。以杜长大、茂佳山黑猪和零号土猪3个品种为研究对象,以杜长大作为主品种,茂佳山黑猪和零号土猪作为从品种,采用偏最小二乘回归(partial least squares regression,PLSR)法建立猪肉含水率主模型,经PDS-LI算法对主模型进行传递后,主模型对茂佳山黑猪和零号土猪样品的预测决定系数R2p分别由传递前的0.263和0.507提高到0.832和0.848,预测均方根误差分别由传递前的1.151%和0.857%降低到0.470%和0.440%,剩余预测偏差(residual prediction deviation,RPD)分别由传递前的1.000和1.214提高到2.447和2.364。结果表明,PDS-LI传递算法能够实现杜长大对茂佳山黑猪和零号土猪样品的模型传递。研究结果为提高猪肉含水率模型适配性问题提供参考。 展开更多
关键词 含水率 模型 高光谱 模型传递 传递算法 分段直接校正
下载PDF
基于高光谱成像的绿皮马铃薯检测方法 被引量:9
4
作者 李小昱 库静 +3 位作者 颜伊芸 徐梦玲 徐森淼 金瑞 《农业机械学报》 EI CAS CSCD 北大核心 2016年第3期228-233,共6页
针对任意放置姿态下的轻微绿皮马铃薯难以检测的问题,进行了半透射与反射高光谱成像方式的不同检测方法比较研究,最终确定较优高光谱成像方式的检测方法。分别以半透射与反射高光谱成像方式对图像维提取RGB、HSV和Lab空间颜色信息,并采... 针对任意放置姿态下的轻微绿皮马铃薯难以检测的问题,进行了半透射与反射高光谱成像方式的不同检测方法比较研究,最终确定较优高光谱成像方式的检测方法。分别以半透射与反射高光谱成像方式对图像维提取RGB、HSV和Lab空间颜色信息,并采用等距映射、最大方差展开、拉普拉斯特征映射进行图像信息降维;分别以半透射与反射高光谱成像方式对光谱维提取感兴趣区域的平均光谱数据,并采用局部保持投影、局部切空间排列、局部线性协调进行光谱信息降维;然后分别建立不同高光谱成像方式下的图像与光谱信息的深度信念网络模型;对识别率良好的模型采用多源信息融合技术进一步优化,并建立基于图像和光谱融合或不同成像方式融合的模型。结果表明,基于半透射和反射高光谱的光谱信息融合模型最优,校正集和测试集识别率均达到100%,可实现轻微绿皮马铃薯的无损检测。 展开更多
关键词 绿皮马铃薯 高光谱成像 检测 深度信念网络 流形学习 信息融合
下载PDF
半透射高光谱结合流形学习算法同时识别马铃薯内外部缺陷多项指标 被引量:5
5
作者 黄涛 李小昱 +5 位作者 金瑞 库静 徐森淼 徐梦玲 武振中 孔德国 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第4期992-996,共5页
针对马铃薯内外部缺陷多项指标难以同时识别的问题,提出了一种半透射高光谱成像技术采用流形学习降维算法与最小二乘支持向量机(LSSVM)相结合的方法,该方法可同时识别马铃薯内外部缺陷的多项指标。试验以315个马铃薯样本为研究对象,... 针对马铃薯内外部缺陷多项指标难以同时识别的问题,提出了一种半透射高光谱成像技术采用流形学习降维算法与最小二乘支持向量机(LSSVM)相结合的方法,该方法可同时识别马铃薯内外部缺陷的多项指标。试验以315个马铃薯样本为研究对象,分别采集合格、外部缺陷(发芽和绿皮)和内部缺陷(空心)马铃薯样本的半透射高光谱图像,同时为了符合生产实际,将外部缺陷马铃薯的缺陷部位以正对、侧对和背对采集探头的随机放置方式进行高光谱图像采集。提取马铃薯样本高光谱图像的平均光谱(390~1 040nm)进行光谱预处理,然后分别采用有监督局部线性嵌入(SLLE)、局部线性嵌入(LLE)和等距映射(Isomap)三种流形学习算法对预处理光谱进行降维,并分别建立基于纠错输出编码的最小二乘支持向量机(ECOC-LSSVM)多分类模型。通过分析和比较建模结果,确定SLLE为最优降维算法,SLLE-LSSVM为最优马铃薯内外部缺陷识别模型,该方法对测试集合格、发芽、绿皮和空心马铃薯样本的识别率分别达到96.83%,86.96%,86.96%和95%,混合识别率达到93.02%。试验结果表明:基于半透射高光谱成像技术结合SLLE-LSSVM的定性分析方法能够同时识别马铃薯内外部缺陷的多项指标,为马铃薯内外部缺陷的快速在线无损检测提供了技术参考。 展开更多
关键词 高光谱成像 流形学习 纠错输出编码 最小二乘支持向量机 内外部缺陷 马铃薯
下载PDF
不同品种冷鲜猪肉pH值高光谱检测模型的传递方法研究 被引量:4
6
作者 刘娇 李小昱 +2 位作者 金瑞 徐森淼 库静 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第7期1973-1979,共7页
针对目前模型传递方法研究大多在不同仪器之间且均采用近红外光谱建立模型,采用高光谱技术建立猪肉pH值定量检测模型,并针对不同品种间的模型传递提出了一种光谱和预测值同步校正(sync correction of spectrum and prediction value,CS... 针对目前模型传递方法研究大多在不同仪器之间且均采用近红外光谱建立模型,采用高光谱技术建立猪肉pH值定量检测模型,并针对不同品种间的模型传递提出了一种光谱和预测值同步校正(sync correction of spectrum and prediction value,CSPV)的传递算法,并与模型更新方法进行比较。当模型满足预测相关系数(correlation coefficient of prediction,rp)rp≥0.837,且剩余预测偏差(residual prediction deviation,RPD)RPD≥1.9时,表明预测结果可靠。以杜长大、茂佳山黑猪和零号土猪3个品种猪肉样品为研究对象,以杜长大作为主品种,茂佳山黑猪和零号土猪作为从品种,采用偏最小二乘(partial least squares regression,PLS)法建立主品种猪肉pH值定量检测模型,模型校正相关系数(correlation coefficient of cross-validation rc)和预测相关系数rp分别达到0.922和0.904,交互验证均方根误差(root mean squared error of cross validation,RMSECV)和预测均方根误差(root mean squared error of prediction,RMSEP)分别为0.045和0.046,RPD为2.380。用主模型分别对茂佳山黑猪和零号土猪pH值进行预测,rp仅达到0.770和0.731,RMSEP分别为0.111和0.209,RPD分别为1.533和1.234,预测精度较差。分别采用CSPV传递算法和模型更新方法对主模型进行传递和修正,比较并验证了两种方法的模型传递和修正结果。采用CSPV算法对模型传递后,当标样个数分别为9个和10个时,rp可提高到0.889和0.900,RPD提高到2.071和2.213,均满足rp≥0.837,且RPD≥1.9;而采用模型更新方法对模型修正后,当添加的代表性样品分别为11个和9个时,rp分别达到0.869和0.845,但RPD仅达到1.934和1.804,不满足RPD≥1.9的条件。结果表明,CSPV传递算法能实现主模型对茂佳山黑猪和零号土猪样品的预测,而模型更新方法只能实现对茂佳山黑猪品种的预测,不能实现对零号土猪样品的预测,且CSPV传递算法预测结果优于模型更新方法。 展开更多
关键词 猪肉 PH值 高光谱 模型传递 模型更新
下载PDF
半透射高光谱多指标同时检测马铃薯内外部缺陷
7
作者 徐梦玲 李小昱 +1 位作者 库静 曲宝羊 《食品安全质量检测学报》 CAS 2015年第8期2988-2993,共6页
目的应用半透射高光谱成像技术结合支持向量机(support vector machine,SVM)模型实现马铃薯内外部缺陷多指标同时检测。方法采集310个马铃薯样本半透射高光谱图像,并分别采用标准正态变量变换(standard normalized variate,SNV)、归一化... 目的应用半透射高光谱成像技术结合支持向量机(support vector machine,SVM)模型实现马铃薯内外部缺陷多指标同时检测。方法采集310个马铃薯样本半透射高光谱图像,并分别采用标准正态变量变换(standard normalized variate,SNV)、归一化(normalize)和平滑处理(smoothing)对光谱信息进行预处理。进一步采用竞争性自适应重加权算法结合无信息变量消除法(competitive adaptive reweighed sampling algorithm,uninformative variable elimination,CARS-UVE)进行特征波长选择,提高模型识别率。结果原始光谱信息经归一化预处理和竞争性自适应重加权算法结合无信息变量消除法(CARS-UVE)降维后所建的支持向量机(SVM)模型识别结果最优,该方法对合格、绿皮和黑心马铃薯样本预测结果分别为90.7%、88.9%、95.7%,混合识别率为91.3%。结论采用半透射高光谱成像技术结合CARS-UVE方法所建SVM模型能够实现马铃薯内外部缺陷多指标同时检测。 展开更多
关键词 高光谱成像 支持向量机 内外部缺陷 马铃薯
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部