熔盐具有优异的传热和储热性能,被广泛应用于核能和太阳能等领域。核磁共振技术(Nuclear Magnetic Resonance,NMR)是研究熔盐微观结构的有力工具。由于商业化标准核磁样品池顶端设计有排气孔的存在,不适用于一些具有挥发性、毒性或放射...熔盐具有优异的传热和储热性能,被广泛应用于核能和太阳能等领域。核磁共振技术(Nuclear Magnetic Resonance,NMR)是研究熔盐微观结构的有力工具。由于商业化标准核磁样品池顶端设计有排气孔的存在,不适用于一些具有挥发性、毒性或放射性的熔盐体系的研究。针对该难点,以AlN、BN和Al_(2)O_(3)陶瓷材料为内管,ZrO_(2)陶瓷材料为外管,设计了一种新型密封性NMR样品池,以满足不同类型熔盐体系的测试要求。此外,利用KBr样品的^(79)Br化学位移与温度的关系,对新设计的多种样品池进行了温度标定。经测试,自主设计的样品池适用于熔盐体系的最高温度为700℃,可满足大多数熔盐系统检测的要求。使用该样品池进行了高温熔盐NMR信号测试,验证了其适用于熔盐体系的可靠性。展开更多
文摘熔盐具有优异的传热和储热性能,被广泛应用于核能和太阳能等领域。核磁共振技术(Nuclear Magnetic Resonance,NMR)是研究熔盐微观结构的有力工具。由于商业化标准核磁样品池顶端设计有排气孔的存在,不适用于一些具有挥发性、毒性或放射性的熔盐体系的研究。针对该难点,以AlN、BN和Al_(2)O_(3)陶瓷材料为内管,ZrO_(2)陶瓷材料为外管,设计了一种新型密封性NMR样品池,以满足不同类型熔盐体系的测试要求。此外,利用KBr样品的^(79)Br化学位移与温度的关系,对新设计的多种样品池进行了温度标定。经测试,自主设计的样品池适用于熔盐体系的最高温度为700℃,可满足大多数熔盐系统检测的要求。使用该样品池进行了高温熔盐NMR信号测试,验证了其适用于熔盐体系的可靠性。