In active sonar operation, the presence of background reverberation and the low signal-to-noise ratio hinder the detection of targets. This paper investigates the application of single-channel monostatic iterative tim...In active sonar operation, the presence of background reverberation and the low signal-to-noise ratio hinder the detection of targets. This paper investigates the application of single-channel monostatic iterative time reversal to mitigate the difficulties by exploiting the resonances of the target. Theoretical analysis indicates that the iterative process will adaptively lead echoes to converge to a narrowband signal corresponding to a scattering object's dominant resonance mode, thus optimising the return level. The experiments in detection of targets in free field and near a planar interface have been performed. The results illustrate the feasibility of the method.展开更多
基金Project supported by the Innovation Foundation of Chinese Academy of Sciences (Grant No. CXJJ-260)
文摘In active sonar operation, the presence of background reverberation and the low signal-to-noise ratio hinder the detection of targets. This paper investigates the application of single-channel monostatic iterative time reversal to mitigate the difficulties by exploiting the resonances of the target. Theoretical analysis indicates that the iterative process will adaptively lead echoes to converge to a narrowband signal corresponding to a scattering object's dominant resonance mode, thus optimising the return level. The experiments in detection of targets in free field and near a planar interface have been performed. The results illustrate the feasibility of the method.