研究Co Cr Fe Ni Ti0.5高熵合金在熔融Na2SO4-25%Na Cl(质量分数)中的腐蚀行为,应用TGA获得其在650和750℃空气中的腐蚀动力学曲线;采用XRD、SEM(EDS)和EPMA对腐蚀产物的截面形貌及元素分布进行分析。结果表明:喷涂Na2SO4-25%Na Cl的Co ...研究Co Cr Fe Ni Ti0.5高熵合金在熔融Na2SO4-25%Na Cl(质量分数)中的腐蚀行为,应用TGA获得其在650和750℃空气中的腐蚀动力学曲线;采用XRD、SEM(EDS)和EPMA对腐蚀产物的截面形貌及元素分布进行分析。结果表明:喷涂Na2SO4-25%Na Cl的Co Cr Fe Ni Ti0.5高熵合金在650和750℃时的腐蚀动力学曲线相似,呈"指数"增长规律;腐蚀截面由含较多Ti O2、部分Cr2O3以及微量尖晶石结构氧化物构成的氧化层与含孔隙且贫Cr和Ti、富Fe、Ni和Co的腐蚀影响区两部分构成;延长腐蚀时间或提高腐蚀温度后,氧化层破裂,与基体的结合程度显著下降,发生严重剥离甚至脱落。分析认为:Co Cr Fe Ni Ti0.5高熵合金在Na2SO4-25%Na Cl中的高温腐蚀归因于氧化、硫化以及氯化的综合作用。展开更多
应用X射线衍射(XRD)、扫描电子显微镜(能谱分析)(SEM-EDS)和电子探针显微分析等方法探讨了预涂覆碱金属硫酸盐的Co Cr Fe NiTi_(0.5)高熵合金在0.75%SO_2气氛中的腐蚀行为。结果表明:在0.75%SO_2气氛中,合金的腐蚀动力学曲线遵循"...应用X射线衍射(XRD)、扫描电子显微镜(能谱分析)(SEM-EDS)和电子探针显微分析等方法探讨了预涂覆碱金属硫酸盐的Co Cr Fe NiTi_(0.5)高熵合金在0.75%SO_2气氛中的腐蚀行为。结果表明:在0.75%SO_2气氛中,合金的腐蚀动力学曲线遵循"抛物线"规律;合金表面生成由Ti,Cr_2,Fe氧化物,尖晶石结构复杂氧化物AB_2O_4以及(Fe,Ni)硫化物组成的腐蚀产物;升高温度显著增加氧化膜厚度以及腐蚀影响区的孔隙密度,这使得氧化层与基体结合程度变差甚至剥离,腐蚀深度增大。Co Cr Fe Ni Ti_(0.5)高熵合金在含硫气氛下的腐蚀归因于腐蚀初期合金元素的氧化,以及随后发生的金属氧化物的硫酸盐化、三元共晶复合盐的形成以及合金元素Fe在熔盐中的溶解反应;不仅如此,介于合金基体与金属氧化层间的腐蚀影响区还发生了合金元素(Fe,Ni)的硫化。展开更多
多主元合金因具有良好的热稳定性有望用于制造超超临界锅炉过热器等耐热设备,燃煤气氛下使用时易发生硫酸盐腐蚀。本工作系统分析了表面喷涂碱金属硫酸盐的多主元合金Co Cr Fe Ni Ti0.5在750℃耐高温腐蚀特性。结果表明:合金Co Cr Fe Ni...多主元合金因具有良好的热稳定性有望用于制造超超临界锅炉过热器等耐热设备,燃煤气氛下使用时易发生硫酸盐腐蚀。本工作系统分析了表面喷涂碱金属硫酸盐的多主元合金Co Cr Fe Ni Ti0.5在750℃耐高温腐蚀特性。结果表明:合金Co Cr Fe Ni Ti0.5的腐蚀动力学曲线遵循抛物线递增规律;腐蚀过程中有挥发性产物Na4(Cr O4)(SO4)、硫化物以及多种氧化物生成;腐蚀初期,氧化膜均匀致密,与基体结合紧密;延长腐蚀时间,氧化膜厚度增加,由致密变得疏松多孔,基体与氧化膜界面产生微孔隙,内氧化和内硫化发生。分析认为,合金Co Cr Fe Ni Ti0.5在750℃耐硫酸盐高温腐蚀特性归因于:保护性氧化膜的形成以及由低熔点共晶体诱发的Cr2O3在熔融态Na2SO4中的碱性熔融。展开更多
文摘研究Co Cr Fe Ni Ti0.5高熵合金在熔融Na2SO4-25%Na Cl(质量分数)中的腐蚀行为,应用TGA获得其在650和750℃空气中的腐蚀动力学曲线;采用XRD、SEM(EDS)和EPMA对腐蚀产物的截面形貌及元素分布进行分析。结果表明:喷涂Na2SO4-25%Na Cl的Co Cr Fe Ni Ti0.5高熵合金在650和750℃时的腐蚀动力学曲线相似,呈"指数"增长规律;腐蚀截面由含较多Ti O2、部分Cr2O3以及微量尖晶石结构氧化物构成的氧化层与含孔隙且贫Cr和Ti、富Fe、Ni和Co的腐蚀影响区两部分构成;延长腐蚀时间或提高腐蚀温度后,氧化层破裂,与基体的结合程度显著下降,发生严重剥离甚至脱落。分析认为:Co Cr Fe Ni Ti0.5高熵合金在Na2SO4-25%Na Cl中的高温腐蚀归因于氧化、硫化以及氯化的综合作用。
文摘应用X射线衍射(XRD)、扫描电子显微镜(能谱分析)(SEM-EDS)和电子探针显微分析等方法探讨了预涂覆碱金属硫酸盐的Co Cr Fe NiTi_(0.5)高熵合金在0.75%SO_2气氛中的腐蚀行为。结果表明:在0.75%SO_2气氛中,合金的腐蚀动力学曲线遵循"抛物线"规律;合金表面生成由Ti,Cr_2,Fe氧化物,尖晶石结构复杂氧化物AB_2O_4以及(Fe,Ni)硫化物组成的腐蚀产物;升高温度显著增加氧化膜厚度以及腐蚀影响区的孔隙密度,这使得氧化层与基体结合程度变差甚至剥离,腐蚀深度增大。Co Cr Fe Ni Ti_(0.5)高熵合金在含硫气氛下的腐蚀归因于腐蚀初期合金元素的氧化,以及随后发生的金属氧化物的硫酸盐化、三元共晶复合盐的形成以及合金元素Fe在熔盐中的溶解反应;不仅如此,介于合金基体与金属氧化层间的腐蚀影响区还发生了合金元素(Fe,Ni)的硫化。
文摘多主元合金因具有良好的热稳定性有望用于制造超超临界锅炉过热器等耐热设备,燃煤气氛下使用时易发生硫酸盐腐蚀。本工作系统分析了表面喷涂碱金属硫酸盐的多主元合金Co Cr Fe Ni Ti0.5在750℃耐高温腐蚀特性。结果表明:合金Co Cr Fe Ni Ti0.5的腐蚀动力学曲线遵循抛物线递增规律;腐蚀过程中有挥发性产物Na4(Cr O4)(SO4)、硫化物以及多种氧化物生成;腐蚀初期,氧化膜均匀致密,与基体结合紧密;延长腐蚀时间,氧化膜厚度增加,由致密变得疏松多孔,基体与氧化膜界面产生微孔隙,内氧化和内硫化发生。分析认为,合金Co Cr Fe Ni Ti0.5在750℃耐硫酸盐高温腐蚀特性归因于:保护性氧化膜的形成以及由低熔点共晶体诱发的Cr2O3在熔融态Na2SO4中的碱性熔融。