期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
PVDF-HFP/PC基室温高压固态电解质
1
作者 杨泽林 杨程响 +2 位作者 赵珊 陈晓涛 康树森 《电源技术》 CAS 北大核心 2021年第9期1106-1108,1147,共4页
含有强力氢键的聚偏二氟乙烯-co-六氟丙烯(PVDF-HFP)具有优良的抗氧化能力,将其作为电解质基体能够匹配更高电压的阴极材料,有望获得更高的电池能量密度。但基体较高的结晶度严重限制了电解质性能的发挥。通过碳酸丙烯酯(PC)的增塑,降... 含有强力氢键的聚偏二氟乙烯-co-六氟丙烯(PVDF-HFP)具有优良的抗氧化能力,将其作为电解质基体能够匹配更高电压的阴极材料,有望获得更高的电池能量密度。但基体较高的结晶度严重限制了电解质性能的发挥。通过碳酸丙烯酯(PC)的增塑,降低了体系结晶度,获得了适用于室温高压锂电体系的PVDF-HFP/PC基固态电解质膜,其室温离子电导率达到2.3×10^(-3) S/cm,电化学稳定窗口达到4.8 V(vs.Li/Li^(+)),相对于目前研究最为广泛的聚氧化乙烯(PEO)基固态电解质,其拥有显著优势。将其与高压阴极LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)匹配,实现了固态锂电池在高截止电压下的稳定充放电循环。 展开更多
关键词 固态电解质 离子电导率 电化学窗口
下载PDF
铝离子聚合物固态电解质 被引量:6
2
作者 康树森 范少聪 +4 位作者 刘岩 魏彦存 李营 房金刚 孟垂舟 《化学学报》 SCIE CAS CSCD 北大核心 2019年第7期647-652,共6页
铝离子电池因其材料成本低、大倍率性能优异和循环寿命超长等优势,而被认为在大规模静态储能应用中具有广阔前景.目前的铝离子电池大部分采用离子液体、尿素和熔融盐等液态电解液,其在实际工程化应用当中存在电解液渗漏的风险.相对而言... 铝离子电池因其材料成本低、大倍率性能优异和循环寿命超长等优势,而被认为在大规模静态储能应用中具有广阔前景.目前的铝离子电池大部分采用离子液体、尿素和熔融盐等液态电解液,其在实际工程化应用当中存在电解液渗漏的风险.相对而言,全固态电池则可以避免电解液渗漏的问题,还具有因去除隔膜和简化封装所带来的电池整体能量密度提升的优点.但是,目前领域内少有关于全固态铝离子电池的研究.基于此,采用溶液浇筑法,以冠醚作为添加剂和配位基团、以聚乙二醇(PEO)作为基底,制备出无定型结构的聚合物固态铝离子电解质.其中,冠醚不仅作为配位基团与铝离子进行配位提高铝离子的稳定性,而且作为相容性高的添加剂降低聚合物结晶度,从而提高固态电解质的离子电导率.测试表明,制备出的18-6/PEO/Al(CF3SO3)3体系聚合物固态铝离子电解质是非晶态为主的晶态与非晶态共存的薄膜,且具备很高的离子电导率(室温,5.5×10^-6 S/cm;100℃高温,1.86×10^-3 S/cm)和较宽的电化学稳定窗口(0~3 V),这为全固态铝离子电池的研发奠定了基础. 展开更多
关键词 铝离子电池 聚合物电解质 溶液浇筑法 冠醚
原文传递
旋涂法制备PEO-PAN-PMMA三组分共混凝胶聚合物电解质 被引量:5
3
作者 康树森 杨程响 +5 位作者 杨泽林 吴宁宁 赵姗 陈晓涛 刘富亮 石斌 《化学学报》 SCIE CAS CSCD 北大核心 2020年第12期1441-1447,共7页
随着新能源产业和储能产业的快速发展,二次电池的安全性和能量密度要求越来越高.而传统的液态锂电池使用易燃的电解液,所以存在较大的安全隐患.因此固态锂电池由于其较高的安全性和能量密度受到越来越多人的关注.目前困扰固态电池应用... 随着新能源产业和储能产业的快速发展,二次电池的安全性和能量密度要求越来越高.而传统的液态锂电池使用易燃的电解液,所以存在较大的安全隐患.因此固态锂电池由于其较高的安全性和能量密度受到越来越多人的关注.目前困扰固态电池应用的主要问题是其离子电导率和电极电解质界面问题.固态电解质是固态电池的关键材料.因此开发高离子电导率的固态电解质是开发固态电池的关键.在本工作中,作者成功通过旋涂法制备聚乙二醇-聚丙烯腈-聚甲基丙烯酸甲酯(PEO-PAN-PMMA)凝胶电解质.PEO-PAN-PMMA聚合物薄膜为均匀透明的,具有较高的吸附率,且热稳定性较好,在380℃下保持稳定.通过浸泡电解液可以得到性能优异的凝胶电解质.该凝胶电解质具有较高的离子电导率,室温离子电导率为0.4 mS/cm,而且电化学窗口较宽,在0~4.2 V之间化学性能较为稳定,界面稳定性较好.组装成Li//PEO-PAN-PMMA凝胶电解质//LiCoO_(2)电池之后,正极首圈放电容量为129.8 mAh/g,循环100周,正极放电容量剩余119.51 mAh/g,在0.1 C、0.2 C、0.5 C和1 C倍率下循环,正极放电容量分别为129.8 mAh/g,99.5 mAh/g,86.1 mAh/g和64 mAh/g. 展开更多
关键词 凝胶电解质 锂金属电池 旋涂法 PEO-PAN-PMMA 高安全
原文传递
锂金属负极界面修饰及其在硫化物全固态电池中的应用 被引量:4
4
作者 梁世硕 康树森 +1 位作者 杨东 胡建华 《化学学报》 SCIE CAS CSCD 北大核心 2022年第9期1264-1268,共5页
随着我国新能源产业的快速发展,全固态电池由于其理论上的高能量密度和高安全性受到广泛关注,而硫化物全固态电池具有离子电导率高的优势成为目前的研发热点,但是金属锂负极的锂枝晶生长和与硫化物电解质之间的不稳定性严重阻碍了硫化... 随着我国新能源产业的快速发展,全固态电池由于其理论上的高能量密度和高安全性受到广泛关注,而硫化物全固态电池具有离子电导率高的优势成为目前的研发热点,但是金属锂负极的锂枝晶生长和与硫化物电解质之间的不稳定性严重阻碍了硫化物全固态电池的研发.本工作在高温150℃下制备了均匀的LiF界面层来抑制金属锂负极/硫化物电解质之间的界面反应和锂枝晶.LiF/Li之间具有较高的界面能,所以可以有效抑制锂枝晶的生长.LiNbO_(2)@LiCoO_(2)//Li_(6)PS_(5)Cl//LiF@Li(LNO@LCO//LPSCl//LiF@Li)全电池0.05 C,0.1 C,0.2 C和0.5 C倍率的正极放电克容量分别为138.4 mAh/g,105.0 mAh/g,80.3 mAh/g和60.4 mAh/g,0.05 C循环50周后,正极容量保持率为80.2%.该方法为后续金属锂负极在全固态电池中的应用提供了新的方案. 展开更多
关键词 界面修饰 硫化物电解质 LiF人工固态电解质界面层 锂金属负极 全固态电池
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部