The galvanic coupling intra-body communication (IBC) was mathematically simulated based on the proposed transfer function. Firstly, a galvanic coupling IBC circuit model was developed and the corresponding parameter...The galvanic coupling intra-body communication (IBC) was mathematically simulated based on the proposed transfer function. Firstly, a galvanic coupling IBC circuit model was developed and the corresponding parameters were discussed. Secondly, the transfer function of the galvanic coupling IBC was derived and proposed. Finally, the signal attenuation characteristics of the galvanic coupling IBC were measured along different signal transmission paths of actual human bodies, while the corresponding mathematical simulations based on the proposed transfer function were carried out. Our investigation showed that the mathematical simulation results coincided with the measured results over the frequency range of 100kHz to 5MHz, which indicated that the proposed transfer function could be useful for theoretical analysis and application of the galvanic coupling IBC.展开更多
基金Supported by the National Natural Science Foundation of China(60801050)the Basic Research Foundation of Beijing Institute of Technology(1010050320804)
文摘The galvanic coupling intra-body communication (IBC) was mathematically simulated based on the proposed transfer function. Firstly, a galvanic coupling IBC circuit model was developed and the corresponding parameters were discussed. Secondly, the transfer function of the galvanic coupling IBC was derived and proposed. Finally, the signal attenuation characteristics of the galvanic coupling IBC were measured along different signal transmission paths of actual human bodies, while the corresponding mathematical simulations based on the proposed transfer function were carried out. Our investigation showed that the mathematical simulation results coincided with the measured results over the frequency range of 100kHz to 5MHz, which indicated that the proposed transfer function could be useful for theoretical analysis and application of the galvanic coupling IBC.