期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
人工智能时代下的酶工程 被引量:3
1
作者 康里奇 谈攀 洪亮 《合成生物学》 CSCD 2023年第3期524-534,共11页
自然界中存在的酶拥有多种多样的功能,它们已经被应用在工业生产和学术研究中,但其中许多酶的性质和功能还不能完全满足应用需要,通过改造来提升这类酶的某些特性是酶工程的重要任务。本文介绍了酶工程的主要发展历程,并重点梳理了人工... 自然界中存在的酶拥有多种多样的功能,它们已经被应用在工业生产和学术研究中,但其中许多酶的性质和功能还不能完全满足应用需要,通过改造来提升这类酶的某些特性是酶工程的重要任务。本文介绍了酶工程的主要发展历程,并重点梳理了人工智能(AI)助力酶工程领域的研究进展。酶工程主要包括理性设计、定向进化、半理性设计和人工智能辅助设计等策略。理性设计方法根据酶的催化机理、结构等先验知识进行改造。定向进化技术通过构建随机突变文库和高通量筛选提升目标酶的稳定性和活性等性质。半理性设计方法借助一系列计算方法构建相比于定向进化更小也更合理的突变文库以降低筛选工作量。人工智能技术在大量数据驱动下可以学习有关蛋白质构成和进化的特征信息。通过直接学习自然界中存在的蛋白质序列、共进化信息和结构,深度神经网络已经可以解决许多类型的酶工程问题,如预测具有有益影响的突变、优化蛋白质的稳定性、提高催化活性等。通过对酶工程现状进行分析,本文旨在进一步推动酶的开发和优化以实现更广泛的应用,为研究者和相关从业人员提供更多有价值的见解。 展开更多
关键词 酶工程 定向进化 人工智能 深度学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部