针对局部均值分解(local mean decomposition,LMD)实现过程中存在的模式混淆现象,提出了一种基于总体局部均值分解(ensemble local mean decomposition,ELMD)与最小二乘支持向量机(least squares support vector machine,LS-SVM)相结合...针对局部均值分解(local mean decomposition,LMD)实现过程中存在的模式混淆现象,提出了一种基于总体局部均值分解(ensemble local mean decomposition,ELMD)与最小二乘支持向量机(least squares support vector machine,LS-SVM)相结合的滚动轴承故障诊断方法。该方法先对滚动轴承振动信号进行ELMD分解,并得到若干乘积函数(product function,PF),然后选取包含主要故障信息的PF分量,提取其峭度系数与能量特征参数以构造故障特征向量,并作为LS-SVM的输入来识别滚动轴承的工作状态和故障类型。通过对滚动轴承正常状态,内圈故障和外圈故障的分析结果表明,基于ELMD与LS-SVM的诊断方法可以准确有效识别滚动轴承的工作状态和故障类型。展开更多
文摘针对局部均值分解(local mean decomposition,LMD)实现过程中存在的模式混淆现象,提出了一种基于总体局部均值分解(ensemble local mean decomposition,ELMD)与最小二乘支持向量机(least squares support vector machine,LS-SVM)相结合的滚动轴承故障诊断方法。该方法先对滚动轴承振动信号进行ELMD分解,并得到若干乘积函数(product function,PF),然后选取包含主要故障信息的PF分量,提取其峭度系数与能量特征参数以构造故障特征向量,并作为LS-SVM的输入来识别滚动轴承的工作状态和故障类型。通过对滚动轴承正常状态,内圈故障和外圈故障的分析结果表明,基于ELMD与LS-SVM的诊断方法可以准确有效识别滚动轴承的工作状态和故障类型。