期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
自然场景车标数据集的构建及其应用 被引量:2
1
作者 邹北骥 雷太航 +2 位作者 刘姝 廖望旻 姜灵子 《国防科技大学学报》 EI CAS CSCD 北大核心 2021年第1期95-102,共8页
车标作为车辆身份的关键特征之一,在车辆的监控与辨识中发挥着重要作用。由于自然场景复杂多变,对其中的车标进行准确识别仍具有很大的挑战性。目前公开数据库很少且存在诸多局限,导致研究缺乏可信度和实用性。本文建立了一个面向自然... 车标作为车辆身份的关键特征之一,在车辆的监控与辨识中发挥着重要作用。由于自然场景复杂多变,对其中的车标进行准确识别仍具有很大的挑战性。目前公开数据库很少且存在诸多局限,导致研究缺乏可信度和实用性。本文建立了一个面向自然场景的全新数据集,包含多种采集环境下的10324幅、67类车辆图像。基于此数据集开展应用研究,提出一个目标检测与深度学习相结合的车标识别方法,包括车标区域定位和车标种类预测两大步骤。实验表明,该方法对复杂背景有较强的适应性,在涉及30种车标的分类任务中达到89.0%的总体识别率。 展开更多
关键词 车标识别 自然场景 目标检测 深度学习
下载PDF
医学影像处理的深度学习可解释性研究进展 被引量:11
2
作者 陈园琼 邹北骥 +3 位作者 张美华 廖望旻 黄嘉儿 朱承璋 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2021年第1期18-29,40,共13页
随着医学影像数据的迅速增长,传统的影像分析方法给医生带来巨大挑战。利用计算机视觉技术提供自动或半自动辅助诊断,可大大缓解人工阅片压力,提高诊断的准确性,促进医疗流程的标准化建设等。目前,深度学习卷积神经网络在医学影像处理... 随着医学影像数据的迅速增长,传统的影像分析方法给医生带来巨大挑战。利用计算机视觉技术提供自动或半自动辅助诊断,可大大缓解人工阅片压力,提高诊断的准确性,促进医疗流程的标准化建设等。目前,深度学习卷积神经网络在医学影像处理中已取得不俗表现,但深度学习“黑匣子”的不可解释性阻碍了智能医疗诊断的发展。为增强对医学影像数据处理的深度学习可解释性的了解,对近几年相关研究进展进行了综述。首先,综述了深度学习在医学领域的应用现状及面临的问题,对神经网络的可解释性内涵进行了讨论;然后,从现有深度学习可解释性的常见方法出发,重点讨论了医学影像处理的深度学习可解释性研究进展;最后,探讨了医学影像处理的深度学习可解释性的发展趋势。 展开更多
关键词 深度学习 医学影像 可解释性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部