在深海环境下,感应耦合电能传输(Inductive Coupled Power Transfer,ICPT)系统初级、次级磁芯在受到水流冲击后会产生偏心和间隙,引起耦合系数的变化。由于系统的非线性、不确定性等因素,PID控制器使系统达到稳压状态的反应时间较长,电...在深海环境下,感应耦合电能传输(Inductive Coupled Power Transfer,ICPT)系统初级、次级磁芯在受到水流冲击后会产生偏心和间隙,引起耦合系数的变化。由于系统的非线性、不确定性等因素,PID控制器使系统达到稳压状态的反应时间较长,电流超调量大,稳压效果较差,导致负载两端电压值发生波动。本文提出基于神经网络的控制算法动态调节升压电路的占空比,最终保证系统输出电压恒定,克服了PID控制器不能满足水下系统控制需要的缺点。Matlab仿真表明与PID控制器相比,神经网络控制器反应时间缩短了25 ms,电流超调量减少了3.5 A,更适合在水下应用。展开更多
在传统感应耦合电能传输(inductively coupled power transfer,ICPT)系统拓扑中,系统谐振频率的漂移会引起耦合效率的下降。针对该问题,本文提出一种新型的基于PSS(原边采用并联串联补偿,副边采用串联补偿)补偿的ICPT系统拓扑。对其电...在传统感应耦合电能传输(inductively coupled power transfer,ICPT)系统拓扑中,系统谐振频率的漂移会引起耦合效率的下降。针对该问题,本文提出一种新型的基于PSS(原边采用并联串联补偿,副边采用串联补偿)补偿的ICPT系统拓扑。对其电路模型进行了分析和建模,得出不同品质因数下,补偿系统的电压、电流增益、传输效率的特性曲线,该补偿拓扑具有较高的补偿因数;分析了系统中补偿系数对谐振元件电压电流的应力影响,选取合适的补偿系数以降低系统的设计成本。最后,设计了1台基于PSS补偿拓扑的ICPT系统样机,实验验证了对PSS补偿拓扑的特性分析。展开更多
文摘在传统感应耦合电能传输(inductively coupled power transfer,ICPT)系统拓扑中,系统谐振频率的漂移会引起耦合效率的下降。针对该问题,本文提出一种新型的基于PSS(原边采用并联串联补偿,副边采用串联补偿)补偿的ICPT系统拓扑。对其电路模型进行了分析和建模,得出不同品质因数下,补偿系统的电压、电流增益、传输效率的特性曲线,该补偿拓扑具有较高的补偿因数;分析了系统中补偿系数对谐振元件电压电流的应力影响,选取合适的补偿系数以降低系统的设计成本。最后,设计了1台基于PSS补偿拓扑的ICPT系统样机,实验验证了对PSS补偿拓扑的特性分析。