The alignment coupling between optical waveguide chips and optical fiber arrays is the basis of the alignment coupling of planar optical waveguide devices, and the precise position detection with angle and spacing adj...The alignment coupling between optical waveguide chips and optical fiber arrays is the basis of the alignment coupling of planar optical waveguide devices, and the precise position detection with angle and spacing adjustments is one of the key steps of alignment coupling. A methodology for position detection, and angle and spacing adjustment was proposed for optical waveguide chips and optical fiber arrays based on machine vision. The experimental results show angle detection precision levels higher than 0.05°, line detection precision levels higher than 0.1 μm, and detection time less than 2 s. Therefore, the system developed herein meets the precise requirements necessary for position detection, and angle and spacing adjustments for optical waveguide chips and optical fiber arrays.展开更多
基金Projects(51475479,51075402)supported by the National Natural Science Foundation of ChinaProject(2012AA040406)supported by the National High Technology Research and Development Program of China+2 种基金Project(20110162130004)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(14JJ2010)supported by the Natural Science Foundation of Hunan Province,ChinaProject(GZKF-201401)supported by the Open Project of Stage Key Laboratory of Fluid Power Transmission and Control(Zhejiang University),China
文摘The alignment coupling between optical waveguide chips and optical fiber arrays is the basis of the alignment coupling of planar optical waveguide devices, and the precise position detection with angle and spacing adjustments is one of the key steps of alignment coupling. A methodology for position detection, and angle and spacing adjustment was proposed for optical waveguide chips and optical fiber arrays based on machine vision. The experimental results show angle detection precision levels higher than 0.05°, line detection precision levels higher than 0.1 μm, and detection time less than 2 s. Therefore, the system developed herein meets the precise requirements necessary for position detection, and angle and spacing adjustments for optical waveguide chips and optical fiber arrays.