-
题名用户生成内容场景下角色导向图神经推荐方法
- 1
-
-
作者
娄铮铮
朱军娇
张万闯
吴宾
-
机构
郑州大学计算机与人工智能学院
-
出处
《计算机学报》
EI
CAS
CSCD
北大核心
2024年第6期1288-1303,共16页
-
基金
国家自然科学青年基金项目(62102369)
中国博士后科学基金项目(2023M743188)
河南省重点研发与推广专项(科技攻关)(232102211045)资助.
-
文摘
近年来互联网的飞速发展不断改变着信息的生产和传递方式,随之出现了用户使用互联网的新方式——用户生成内容(User-Generated Content,UGC).该场景中内容以传播速度快、获取成本低等优势迅速占据互联网信息传播的重要地位.不同于传统推荐场景,UGC场景下用户同时扮演生产者和消费者双重角色,这使得在构建推荐模型时既需要考虑消费者与内容之间的交互信息,也需关注内容生产者对于消费者决策的影响.因此,UGC场景下个性化推荐算法研究的关键在于如何充分挖掘消费者-内容和消费者-生产者之间的关联关系.在面向UGC场景的推荐研究中,比较有代表性的模型为CPRec,该模型虽取得一定进展,但仍存在两点不足之处.其一,在模型构建层面,未能显式建模消费者-内容与消费者-生产者之间的高阶连通关系,难以学习出高质量的节点表征.其二,在模型优化层面,无法区分每个观测数据在不同训练阶段的贡献度,将影响推荐结果的质量.为此,本文提出一种新颖的角色导向图神经推荐方法RGNRec(Role-Guided Graph Neural Recommendation)用于UGC场景的个性化排序任务.特别地,基于用户的历史行为数据与内容的创作者信息分别构建了消费者-内容交互图和消费者-生产者交互图.进一步,为了显式捕获两种交互图中的高阶连通信息,构建一种双通道线性传播模块,同时刻画了消费者兴趣与内容生产者影响的扩散过程.最终,提出设计一种自适应的正样本权重生成策略,将其融入非采样损失函数,并建立双层优化机制来学习模型的参数.本文的核心贡献包括:(1)引入双通道线性传播模块,以显式解耦出自身兴趣与内容生产者效应对于用户偏好建模的不同贡献度;(2)提出权重自适应的非采样损失函数,以解决不同观测样例在模型不同训练阶段贡献不同的问题.本文分别采用经典的和最先进的图神经网络方法作为基准,在3个UGC场景Pinterest、Recipes和Reddit下进行了实验对比.在整体推荐性能方面,无论模型精度亦或训练效率上均优于各基准方法,尤其在Precision@10指标上获得了 4.31%~17.83%的提升;然后通过消融实验验证了双通道线性传播模块和权重自适应优化机制的合理性与必要性;最后通过实验验证了本文方法在缓解数据稀疏和用户冷启动方面的优越性.
-
关键词
推荐系统
图神经网络
用户生成内容
双重角色
非采样学习
-
Keywords
recommender systems
graph neural networks
user-generated content
dual roles
non-sampling learning
-
分类号
TP18
[自动化与计算机技术—控制理论与控制工程]
-
-
题名光斑密度峰值的毫米波雷达目标检测
- 2
-
-
作者
娄铮铮
张万闯
吴云鹏
-
机构
郑州大学计算机与人工智能学院
-
出处
《小型微型计算机系统》
CSCD
北大核心
2024年第10期2455-2464,共10页
-
基金
国家自然科学青年基金项目(62002330)资助.
-
文摘
毫米波雷达目标检测任务是车辆环境感知的重要组成部分,对恶劣天气条件下的智能驾驶具有重要意义.虽然现有雷达目标检测方法已取得不错的研究成果,但雷达数据仍存在手工设计的特征信息量不足、特征提取不充分以及时序特征未充分利用的问题.为解决这些问题,本文提出光斑密度峰值与神经网络相融合的两阶段目标检测方法.第一个阶段光斑密度峰值聚类算法,对射频图像中的目标进行粗略估计,并生成聚类簇对应的目标候选.将聚类生成的候选目标特征融合到原始射频图像.第二阶段基于通道融合的3D自编码器目标检测网络进一步提取目标多普勒速度和时序特征并分类.实验表明,所提出的两阶段方法与基准实验RODNet(CDC)相比,平均精度指标提升4.3%,平均召回率提升2.3%.
-
关键词
毫米波雷达
目标检测
聚类
深度学习
射频图像
-
Keywords
millimeter-wave radar
object detection
clustering
deep learning
radio frequency image
-
分类号
TP391
[自动化与计算机技术—计算机应用技术]
-