本文用40Cr 钢研究了奥氏体晶粒的异常长大过程以及加热前的原始组织对异常长大过程的影响,并利用已有的计算驱动力 P 及阻力 F 的公式进行了定量计算及分析讨论。结果表明,当奥氏体起始晶粒的 P>F 时,晶粒将发生长大。在长大过程中...本文用40Cr 钢研究了奥氏体晶粒的异常长大过程以及加热前的原始组织对异常长大过程的影响,并利用已有的计算驱动力 P 及阻力 F 的公式进行了定量计算及分析讨论。结果表明,当奥氏体起始晶粒的 P>F 时,晶粒将发生长大。在长大过程中,已开始长大的大晶粒不断吞并周围小晶粒,周围小晶粒则基本上不长大。当小晶粒消失,大晶粒彼此相遇时,长大将终止。可以通过预备热处理调整加热前的原始组织,从而改变奥氏体起始晶粒的 D、D_(n,x)、Z_0及r,控制 P 及 F。对 Zener、Gladman,等的公式进行了校验。结果表明,按戚正风公式计算所得 P 与实测结果符合得最好。按 Zener 公式计算所得 P 偏高,按 Gladmom 公式计算所得 P 又偏低。展开更多
文摘本文用40Cr 钢研究了奥氏体晶粒的异常长大过程以及加热前的原始组织对异常长大过程的影响,并利用已有的计算驱动力 P 及阻力 F 的公式进行了定量计算及分析讨论。结果表明,当奥氏体起始晶粒的 P>F 时,晶粒将发生长大。在长大过程中,已开始长大的大晶粒不断吞并周围小晶粒,周围小晶粒则基本上不长大。当小晶粒消失,大晶粒彼此相遇时,长大将终止。可以通过预备热处理调整加热前的原始组织,从而改变奥氏体起始晶粒的 D、D_(n,x)、Z_0及r,控制 P 及 F。对 Zener、Gladman,等的公式进行了校验。结果表明,按戚正风公式计算所得 P 与实测结果符合得最好。按 Zener 公式计算所得 P 偏高,按 Gladmom 公式计算所得 P 又偏低。