Solid oxide carbon dioxide electrolysers are expected to play a key role in carbon-neutral energy landscape.However,the limited activity of traditional ceramic cathodes still restricts the electrochemical performance....Solid oxide carbon dioxide electrolysers are expected to play a key role in carbon-neutral energy landscape.However,the limited activity of traditional ceramic cathodes still restricts the electrochemical performance.Here we report the doping of Mn at the B site of SrFeO3-δcathode to improve CO2 electrolysis.The oxygen vacancy concentration is increased by^30%with Mn doping while the surface oxygen exchange coefficients are enhanced by^10 times.The chemisorption of CO2 indicates the presence of chemical intermediate state between CO2 molecule and carbonate ion on the oxygen-deficient cathode surface which therefore leads to the desorption temperature of^800℃.The Mn-doped SrFeO3-δenhances CO2 electrolysis with no performance degradation being observed even after high-temperature operation of 100 hours.展开更多
基金Supported by the National Natural Science Foundation of China(No.21902025,91845202 and 21750110433)Innovative Project of the Education Department of Fujian Province(JAT170174)+2 种基金Natural Science Foundation of Fujian Province(2018J05012)Dalian National Laboratory for Clean Energy(DNL180404)Strategic Priority Research Program of Chinese Academy of Sciences(XDB2000000)。
文摘Solid oxide carbon dioxide electrolysers are expected to play a key role in carbon-neutral energy landscape.However,the limited activity of traditional ceramic cathodes still restricts the electrochemical performance.Here we report the doping of Mn at the B site of SrFeO3-δcathode to improve CO2 electrolysis.The oxygen vacancy concentration is increased by^30%with Mn doping while the surface oxygen exchange coefficients are enhanced by^10 times.The chemisorption of CO2 indicates the presence of chemical intermediate state between CO2 molecule and carbonate ion on the oxygen-deficient cathode surface which therefore leads to the desorption temperature of^800℃.The Mn-doped SrFeO3-δenhances CO2 electrolysis with no performance degradation being observed even after high-temperature operation of 100 hours.