期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于YOLOv8s模型改进的道路交通目标检测方法研究
1
作者 桑嘉更 张志佳 +2 位作者 肖传民 罗海波 张俊摇 《红外与激光工程》 EI CSCD 北大核心 2024年第11期294-307,共14页
红外图像目标检测在交通领域中有很重要的应用价值,然而,由于红外图像存在分辨率低、缺乏颜色信息、对比度差、特征模糊的特点,导致现有模型在检测红外车辆与行人时精度不高。为此,文中对YOLOv8s进行了改进,首先对特征融合机制进行改进... 红外图像目标检测在交通领域中有很重要的应用价值,然而,由于红外图像存在分辨率低、缺乏颜色信息、对比度差、特征模糊的特点,导致现有模型在检测红外车辆与行人时精度不高。为此,文中对YOLOv8s进行了改进,首先对特征融合机制进行改进,在网络中添加小目标检测层,充分利用目标的浅层特征信息,提高对小目标检测的准确性。其次引入了SPD(Space to Depth)细粒化模块来代替YOLOv8s中的3×3卷积进行下采样,避免了3×3卷积下采样导致红外图像细粒度信息丢失。并且还设计了一个新的混合注意力机制,使网络更好地聚焦感兴趣的区域,减少背景对行人和车辆检测的干扰,增强模型对目标特征的关注度。最后使用Focal EIOU损失函数代替CIOU损失函数,改善了CIOU在特殊情况失效和正负样本不平衡的问题。在交通场景红外图像数据集FLIR_ADAS_v2上进了行实验,验证了算法的有效性。与YOLOv8s相比,改进后的模型mAP@0.5从83.4%提升到了89.3%。 展开更多
关键词 YOLOv8s 目标检测 注意力机制 损失函数 细粒化卷积 红外图像
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部