Fe-doped In2O3 dilute magnetic semiconducting nanowires are fabricated on A u-deposited Si substrates by the chemical vapor deposition technique. It is confirmed by energy dispersive x-ray spectroscopy (EDS), x-ray ...Fe-doped In2O3 dilute magnetic semiconducting nanowires are fabricated on A u-deposited Si substrates by the chemical vapor deposition technique. It is confirmed by energy dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy that Fe has been successfully doped into lattices of In2O3 nanowires. The EDS measurements reveal a large amount of oxygen vacancies existing in the Fe-doped In2O3 nanowires. The Fe dopant exists as a mixture of Fe2+ and Fe3+, as revealed by the XPS. The origin of room-temperature ferromagnetism in Fe-doped In2O3 nanowires is explained by the bound magnetic polaron model.展开更多
We investigate the magnetic damping parameter of Fe 1−x Cr x thin films using the time-resolved magneto-optical Kerr effect technique.It is demonstrated that the overall effective damping parameter is enhanced with th...We investigate the magnetic damping parameter of Fe 1−x Cr x thin films using the time-resolved magneto-optical Kerr effect technique.It is demonstrated that the overall effective damping parameter is enhanced with the increasing Cr concentration.The effective damping at high fieldα0 is found to be significantly enhanced when increasing the Cr concentration with theα0=0.159 in the Fe 45 Cr 55 enhanced by 562%compared with that ofα0=0.024 in the pure Fe film.This study provides a new approach of controlling the effective damping parameter with a desired magnitude via varying Cr composition.展开更多
Topological crystalline insulators (TCIs) have attracted worldwide interest since their theoretical predication and have created exciting opportunities for studying topological quantum physics and for exploring spin...Topological crystalline insulators (TCIs) have attracted worldwide interest since their theoretical predication and have created exciting opportunities for studying topological quantum physics and for exploring spintronic appli- cations. In this work, we successfully synthesize PbTe nanowires via the chemical vapor deposition method and demonstrate the existence of topological surface states by their 2D weak anti-localization effect and Shubnikov-de Haas oscillations. More importantly, the surface state contributes ~61% of the total conduction, suggesting dom- inant surface transport in PbTe nanowires at low temperatures. Our work provides an experimental groundwork for researching TCIs and is a step forward for the applications of PbTe nanowires in spintronic devices.展开更多
Nd-doped In_2O_3 nanowires were fabricated by an Au-catalyzed chemical vapor deposition method.Nd atoms were successfully doped into the In_2O_3 host lattice structure,as revealed by energy dispersive x-ray spectrosco...Nd-doped In_2O_3 nanowires were fabricated by an Au-catalyzed chemical vapor deposition method.Nd atoms were successfully doped into the In_2O_3 host lattice structure,as revealed by energy dispersive x-ray spectroscopy,x-ray photoelectron spectroscopy,Raman spectroscopy,and x-ray diffraction.Robust room temperature ferromagnetism was observed in Nd-doped In_2O_3 nanowires,which was attributed to the long-range-mediated magnetization among Nd^(3+)-vacancy complexes through percolation-bound magnetic polarons.展开更多
基金Supported by the National Basic Research Program of China under Grant Nos 2014CB921101,2014CB921103 and2013CB922103the National Natural Science Foundation of China under Grant Nos 11274003,61176088 and 61274102+1 种基金the Program for the New Century Excellent Talents in University under Grant No NCET-11-0240the PAPD Project,and the Fundamental Research Funds for the Central Universities
文摘Fe-doped In2O3 dilute magnetic semiconducting nanowires are fabricated on A u-deposited Si substrates by the chemical vapor deposition technique. It is confirmed by energy dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy that Fe has been successfully doped into lattices of In2O3 nanowires. The EDS measurements reveal a large amount of oxygen vacancies existing in the Fe-doped In2O3 nanowires. The Fe dopant exists as a mixture of Fe2+ and Fe3+, as revealed by the XPS. The origin of room-temperature ferromagnetism in Fe-doped In2O3 nanowires is explained by the bound magnetic polaron model.
基金Supported by the National Key Research and Development Program of China(Grant No.2016YFA0300803)the National Natural Science Foundation of China(Grant Nos.61427812 and 11774160)+2 种基金the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20192006)the Fundamental Research Funds for the Central Universities(Grant No.021014380113)the Program for New Century Excellent Talents in Universities of Ministry of Education of China(Grant No.NCET-13-0094).
文摘We investigate the magnetic damping parameter of Fe 1−x Cr x thin films using the time-resolved magneto-optical Kerr effect technique.It is demonstrated that the overall effective damping parameter is enhanced with the increasing Cr concentration.The effective damping at high fieldα0 is found to be significantly enhanced when increasing the Cr concentration with theα0=0.159 in the Fe 45 Cr 55 enhanced by 562%compared with that ofα0=0.024 in the pure Fe film.This study provides a new approach of controlling the effective damping parameter with a desired magnitude via varying Cr composition.
基金Supported by the National Key Research and Development Program of China under Grant No 2016YFA0300803the National Basic Research Program of China under Grant No 2014CB921101the National Natural Science Foundation of China under Grant Nos 61474061 and 61674079
文摘Topological crystalline insulators (TCIs) have attracted worldwide interest since their theoretical predication and have created exciting opportunities for studying topological quantum physics and for exploring spintronic appli- cations. In this work, we successfully synthesize PbTe nanowires via the chemical vapor deposition method and demonstrate the existence of topological surface states by their 2D weak anti-localization effect and Shubnikov-de Haas oscillations. More importantly, the surface state contributes ~61% of the total conduction, suggesting dom- inant surface transport in PbTe nanowires at low temperatures. Our work provides an experimental groundwork for researching TCIs and is a step forward for the applications of PbTe nanowires in spintronic devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274003)the Priority Academic Program Development of Jiangsu Higher Education Institutions,Chinathe Fundamental Research Funds for the Central Universities,China
文摘Nd-doped In_2O_3 nanowires were fabricated by an Au-catalyzed chemical vapor deposition method.Nd atoms were successfully doped into the In_2O_3 host lattice structure,as revealed by energy dispersive x-ray spectroscopy,x-ray photoelectron spectroscopy,Raman spectroscopy,and x-ray diffraction.Robust room temperature ferromagnetism was observed in Nd-doped In_2O_3 nanowires,which was attributed to the long-range-mediated magnetization among Nd^(3+)-vacancy complexes through percolation-bound magnetic polarons.