针对电商评论中所包含的消费者情感倾向信息问题,提出一种基于注意力机制和双向长短期记忆(bidirectional long-short term memory,BLSTM)网络的情感倾向分类模型。该模型使用预训练的字向量作为输入特征,通过双向长短期记忆网络来学习...针对电商评论中所包含的消费者情感倾向信息问题,提出一种基于注意力机制和双向长短期记忆(bidirectional long-short term memory,BLSTM)网络的情感倾向分类模型。该模型使用预训练的字向量作为输入特征,通过双向长短期记忆网络来学习文本的语义特征。依此特征,设计了一种新的注意力机制来捕捉BLSTM模型生成的文本语义特征中重要的信息,以降低文本中冗余噪声对于情感倾向分类的影响。实验结果表明,与传统机器学习方法以及长短期记忆模型和双向长短期记忆模型相比,所提出模型在电商评论的情感倾向分类上取得了较好的结果。展开更多
文摘提供了一种适宜于高速、高精度开关电容型流水线模数转换器(ADC)的无采样保持放大器的模拟前端电路。该模拟前端电路作为第一级4.5位子级电路,被应用于一款16位125 MS/s开关电容流水线ADC中进行验证。该ADC电路采用0.18μm 1P6M 1.8V CMOS工艺实现,测试结果表明该ADC电路在全速采样条件下对于10.1 MHz的输入信号得到的信噪比为77.5 d BFS,无杂散动态范围为94.8 d B,总功耗为330 m W。
文摘针对电商评论中所包含的消费者情感倾向信息问题,提出一种基于注意力机制和双向长短期记忆(bidirectional long-short term memory,BLSTM)网络的情感倾向分类模型。该模型使用预训练的字向量作为输入特征,通过双向长短期记忆网络来学习文本的语义特征。依此特征,设计了一种新的注意力机制来捕捉BLSTM模型生成的文本语义特征中重要的信息,以降低文本中冗余噪声对于情感倾向分类的影响。实验结果表明,与传统机器学习方法以及长短期记忆模型和双向长短期记忆模型相比,所提出模型在电商评论的情感倾向分类上取得了较好的结果。