We investigate the temporal evolution of the current pulses from an ac Fie cold plasma jet at atmospheric pressure and with driving frequency in the range 14.76-15.30 kHz. The driving frequency is used as the plasma s...We investigate the temporal evolution of the current pulses from an ac Fie cold plasma jet at atmospheric pressure and with driving frequency in the range 14.76-15.30 kHz. The driving frequency is used as the plasma system's bifurcation parameter in analogy with the evolution in which the current pulses undergoes multiplication and chaos. Such time-domain nonlineaxity is important for controlling instabilities in atmospheric glow discharges. In addition, the observation can provide some data to support the simulation results reported previously [Appl. Phys. Lett. 90 (2007) 071501].展开更多
文摘We investigate the temporal evolution of the current pulses from an ac Fie cold plasma jet at atmospheric pressure and with driving frequency in the range 14.76-15.30 kHz. The driving frequency is used as the plasma system's bifurcation parameter in analogy with the evolution in which the current pulses undergoes multiplication and chaos. Such time-domain nonlineaxity is important for controlling instabilities in atmospheric glow discharges. In addition, the observation can provide some data to support the simulation results reported previously [Appl. Phys. Lett. 90 (2007) 071501].