电解质是决定超级电容器安全性、能量密度和循环性能的最重要因素之一。盐包水电解质由于其不易燃性和宽工作电压范围,已被广泛用于高性能储能装置中。但是,盐包水电解质的低电导率和高粘度通常制约着超级电容器的高倍率性能。本文将1,3...电解质是决定超级电容器安全性、能量密度和循环性能的最重要因素之一。盐包水电解质由于其不易燃性和宽工作电压范围,已被广泛用于高性能储能装置中。但是,盐包水电解质的低电导率和高粘度通常制约着超级电容器的高倍率性能。本文将1,3-二氧戊烷(DIOX)引入盐包水电解质体系中,形成“LiTFSI-DIOX/H_(2)O”混合电解质。与盐包水电解质相比,该电解质在保证宽的工作电位窗口的情况下,具有低粘度、高电导率和低成本的特点。利用5 m LiTFSI-DIOX/H_(2)O电解质构成的超级电容器在电流密度为1 A g^(-1)的条件下循环5000次后容量保持率为98.5%,库仑效率接近100%。即使在-30℃的低温下,也能保持室温容量的76.1%,这表明超级电容器具有良好的低温倍率性能。展开更多
文摘电解质是决定超级电容器安全性、能量密度和循环性能的最重要因素之一。盐包水电解质由于其不易燃性和宽工作电压范围,已被广泛用于高性能储能装置中。但是,盐包水电解质的低电导率和高粘度通常制约着超级电容器的高倍率性能。本文将1,3-二氧戊烷(DIOX)引入盐包水电解质体系中,形成“LiTFSI-DIOX/H_(2)O”混合电解质。与盐包水电解质相比,该电解质在保证宽的工作电位窗口的情况下,具有低粘度、高电导率和低成本的特点。利用5 m LiTFSI-DIOX/H_(2)O电解质构成的超级电容器在电流密度为1 A g^(-1)的条件下循环5000次后容量保持率为98.5%,库仑效率接近100%。即使在-30℃的低温下,也能保持室温容量的76.1%,这表明超级电容器具有良好的低温倍率性能。